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We study nonlinear stochastic systems with time-delayed feedback using the concept of delay Fokker-Planck
equations introduced by Guillouzic, L’Heureux, and Longtin. We derive an analytical expression for stationary
distributions using first-order perturbation theory. We demonstrate how to determine drift functions and noise
amplitudes of this kind of systems from experimental data. In addition, we show that the Fokker-Planck
perspective for stochastic systems with time delays is consistent with the so-called extended phase-space
approach to time-delayed systems.
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I. INTRODUCTION

There are various examples of stochastic systems with
time-delayed feedback in the inanimate and animate world.
The reason for this is that many complex stochastic systems
exhibit self-regulating control mechanisms in terms of feed-
back loops. By means of such feedback loops, signals or
other key quantitiesssuch as information, matter, energy, and
so ond are fed back from output to input interfaces. Usually,
the transmission takes some time, which implies that the in-
put signals are related to the output signals at earlier times.
In order to study the implications of feedback delays,
we may regard feedback loops as simple transport mecha-
nisms that provide input variables in terms of time-delayed
output variables. In this case, the systems at hand can be
described in terms of stochastic systems with time-delayed
feedback.

In life sciences, prominent examples of complex systems
with time delays are population dynamicsf1,2g swhere de-
lays are given by maturation timesd, the spread and the dy-
namics of infectious diseasesf3g swhere delays are related to
the inactive infected phased, neural networksf4–12g, and
motor control systemsswhere delays can be found in terms
of signal transmission times between receptors, muscles, and
brain areas and in terms of receptor measurement times
f13–15gd. In the latter context, breathingf16g, balancingf17g,
standingf18–21g, pointing talksf22,23g, synchronized and
coordinated movementsf24–26g, and the pupil light reflex
f27g have been discussed. Further examples of biological
systems involving time delays are reviewed inf28g. In the
inanimate nature, some examples of complex systems with
time delays are laser systems with optical feedbackf29–43g
centered around the Ikeda equation and the Lang-Kobayachi
equationf44–47g, VCSELs with time-delayed feedback con-
trol f48,49g, hydrodynamic problemsf50–52g, chemical sur-
face reactions f53g, and feedback-regulated voltage-
controlled oscillatorsf54–57g.

In many cases, stochastic systems with time-delayed feed-
back can be described in terms of stochastic delay differen-
tial equations of the form

]

]t
Xstd = h„Xstd,Xst − td… + g„Xstd,Xst − td…Gstd, s1d

whereXstd describes a state variable,t.0 is the time delay,
hsx,yd is the drift function, gsx,yd denotes a sstate-
dependentd noise amplitude, andGstd refers to a Langevin
force f58g normalized to unity likekGstdGst8dl=dst− t8d fhere
ds·d denotes the delta function and the bracketsk·l denote an
ensemble averageg. The advantage of Eq.s1d is that it ap-
peals to our intuition. If we think of a stochastic system as a
system that is affected by a deterministic force on the one
hand, and a fluctuating force on the other hand, then Eq.s1d
nicely corresponds to this picture, provided that we identify
h with the deterministic force and the productgG with the
fluctuating force. The disadvantage of Eq.s1d is that it can
hardly be solved analytically in a direct way. That is, the
derivation of analytical expressions for mean values and
variances, correlation functions, and probability distributions
on the basis of Eq.s1d in a direct way is often mathemati-
cally involved. A solution to this problem can be easily found
for stochastic systems without delay. Forhsx,yd=hsxd and
gsx,yd=gsxd, Eq. s1d reduces to a Langevin equationf58g. In
this case, analytical results can conveniently be derived in an
indirect way, namely by solving the corresponding Fokker-
Planck equation, see Fig. 1. Therefore, at issue is to treat
stochastic systems with time delays in a similar way. That is,
as shown in Fig. 1, the objective is to develop a Fokker-
Planck perspective for systems described by Eq.s1d and to
exploit this perspective in order to solve analytically the sto-
chastic delay differential equations1d. The key step in this
regard has been carried out in a study by Guillouzicet al.
f59g in which a delay Fokker-Planck equation for Eq.s1d has
been derived. Since then, several results have been obtained
from this Fokker-Planck perspectivef60–64g consistent with
alternative studies in which the stochastic delay differential
equation s1d has been solved directly for linear systems
f65–67g. So far, however, nonlinear stochastic systems with
time delays have not been treated analytically in generalsfor
exceptions, see the small time delay approachf59g and the
variable transformation approachf61,67gd.
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In the present study, we will dwell on the development of
a Fokker-Planck perspective for stochastic systems with time
delays. In Sec. II, we will show that the delay Fokker-Planck
equation derived by Guillouzicet al. is consistent with a
technique that is nowadays frequently used: the extended
phase-space approachf32,34,51,54,55,68g. In Sec. II A, we
will exploit the Fokker-Planck approach to derive the first-
order statisticssi.e., the stationary probability densitiesd for
nonlinear stochastic systems with time delays. The focus will
be on systems with feedback loops that only weakly affect
the system dynamics. Such systems have previously been
analyzed by means of master equationsf48,69,70g. Examples
will be given in Sec. II B. In Sec. II C, we will use the
Fokker-Planck approach to study the second-order statistics
of stochastic systems with time delays. In this context, we
will briefly elucidate how to derive analytically autocorrela-
tion functions for systems described by Eq.s1d and how to
estimate the functionsh and g involved in Eq. s1d on the
basis of experimental observations.

II. DELAY FOKKER-PLANCK EQUATIONS
AND EXTENDED PHASE-SPACE APPROACH

We consider a random variableXstdPV that is defined by
Eq. s1d for t.0 and subjected to particular boundary condi-
tions se.g., natural, periodic, or mixed boundary conditionsd.
For tP f−t ,0g, we assume thatXstd is given by the initial
function w0: Xs−zd=w0s−zd with zP f0,tg. In order to inter-
pret the multiplicative noise term in Eq.s1d, we first write
Eq. s1d in the form of

Xstd = Xst*d +E
t*

t

h„Xssd,Xss− td…ds

+E
t*

t

g„Xssd,Xss− td…dWssd, s2d

where Wstd denotes a Wiener processf71g. Next, we note
that expressions likeet*

t XnssddWssd with n=1,2, . . . can be
interpreted according to the Stratonovich or Ito calculusf71g.

In contrast, expressions likeet*
t Xnss−tddWssd with t.0 can

only be interpreted according to the Ito calculusf72g. As a
result, the multiplicative noise integral et*

t g(Xssd ,
Xss−td)dWssd can be discretized with respect to timef71g in
two different ways: we can either use the Stratonovich rule
for the first argument ofgsx,yd and the Ito rule for the sec-
ond argument, or we can use the Ito rule for both arguments.
We will show below that these two options are also present
in the delay Fokker-Planck equation corresponding to
Eq. s1d.

Now let us turn to the extended phase-space approach to
delay differential equations. There are two closely related
approaches. First, we can define a random path functionwtszd
of lengtht at every time pointt by

wtszd = Xst − zd s3d

for zP f0,tg f68g. In particular, we have

wts0d = Xstd, wtstd = Xst − td, s4d

and reobtain the initial functionw0s−zd=Xs−zd with z
P f0,tg. If we regard the random path functionwtszd as a
function of the argumentst and z, then it is defined on an
extended domain of definition given byf0,`d3 f0,tg. That
is, the stochastic process under consideration is embedded in
a two-dimensional space. Second, a random path function
wtn

szd can be defined at discrete time pointstn=nt by
wtn

szd=Xstd with t=z+nt, zP f0,tg, n=0,1,2. . . .That is,
we havewtn

szd=Xsz+ntd f32,34,51g. Here the stochastic pro-
cess is studied on the domain of definitionZ3 f0,tg, where
Z=h0,1,2, . . .j. In what follows, we will use the random
path functionwtszd.

First, we assume that a particular random path ofXstd is
given on an intervalft* −t ,t*g and denote this path bywt*szd.
Next we consider time pointst that fall in the subsequent
interval ft* ,t* +tg. In this case, the time-delayed state vari-
ableXst−td can be expressed by means ofwt*szd like

Xst − td = wtstd = wt*st − t + t*d, s5d

see Fig. 2.
Consequently,Xst−td can be eliminated in Eq.s2d, which

leads to the stochastic integral equation

Xstd = Xst*d +E
t*

t

h̃„Xssd,s…ds+E
t*

t

g̃„Xssd,s…dWssd s6d

that involves the time-dependent coefficientsh̃ andg̃ defined
by

h̃sx,sd = h„x,wt*st − s+ t*d…, s7d

FIG. 1. Delay Fokker-Planck equations represent one of the four
corners of a theory of stochastic systems with time delays.

FIG. 2. Illustration of Eq.s5d.
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g̃sx,sd = g„x,wt*st − s+ t*d…. s8d

The stochastic integral equations6d describes a Markov dif-
fusion process with probability densityPsx,td=kd(x−Xstd)l
and transition probability densityPsx,t ux8 ,t8d provided that
the random pathwt*std is given. Consequently, the evolution
equations ofPsx,t uwt*d andPsx,t ux8 ,t8 ;wt*d are defined by

]

]t
Psx,tuwt*d = L̂sx,¹x,wt*dPsx,tuwt*d, s9d

]

]t
Psx,tux8,t8;wt*d = L̂sx,¹x,wt*dPsx,tux8,t8;wt*d s10d

with

L̂sx,¹x,wt*d = −
]

]x
Fh̃sx,td +

n

2
g̃sx,td

]g̃sx,td
]x

G +
1

2

]2

]x2g̃2sx,td,

s11d

where n=0 holds for the Ito case andn=1 for the
Stratonovich case. From Eqs.s7d, s8d, ands11d, we read off

that L̂ depends only onwt*st− t+ t*d=Xst−td. The reason for
this is that the stochastic feedback systems1d depends only
on one particular previous time pointtt= t−t. Consequently,
for all pathswt* that involve the same state variableXst−td,
the probability densitiesPsx,t uwt*d and Psx,t ux8 ,t8 ;wt*d
evolve in the same way at timet. In other words, the evolu-
tion of the probability densities at timet depends only on
Xst−td. Therefore, Eqs.s9d–s11d become

U ]

]t
Psx,tuxt,ttdU

tt=t−t

= L̂sx,¹x,xtdPsx,tuxt,t − td, s12d

U ]

]t
Psx,tux8,t8;xt,ttdU

tt=t−t

= L̂sx,¹x,xtdPsx,tux8,t8;xt,t − td

s13d

with

L̂sx,¹x,xtd = −
]

]x
Fhsx,xtd +

n

2
gsx,xtd

]gsx,xtd
]x

G
+

1

2

]2

]x2g2sx,xtd. s14d

Note thatfas indicated on the left-hand sides of Eqs.s12d and
s13dg the partial derivatives with respect tot act only on the
very first time arguments and do not act on the time variable
involved in the constraint. Let us emphasize the meaning of
Eqs. s12d and s13d. Equation s12d describes howPsx,td
changes at timet provided that the system is at timet−t in
the statext. Accordingly, if we are dealing with a system that
is at time t−t in the statext and evolves during the time
interval ft−t ,tg such that it is distributed at timet like
Psx,td, then for a small time stepDt the distributionPsx,t

+Dtd is simply given by Psx,t+Dtd=s1+DtL̂dPsx,td
+OsDt2d. Likewise, from Eq.s13d it follows that if we have
a system at hand which is at timet−t in the statext, which

is at time t8 in the statex8, and evolves during the time
interval ft−t ,tg such that it is distributed at timet like
Psx,td, then Psx,t+Dtd is given by Psx,t+Dtd=s1
+DtL̂dPsx,td+OsDt2d again.

Multiplying Eq. s12d with Psxt ,t−td=kd(xt−Xst−td)l
and integrating the result with respectxt, we obtain the evo-
lution equation

]

]t
Psx,td =E

V

dxtL̂sx,¹x,xtdPsx,t;xt,t − td, s15d

which can alternatively be expressed as

]

]t
Psx,td = F̂sx,¹x,PdPsx,td s16d

for

F̂sx,¹x,Pd =E
V

dxtH−
]

]x
Fhsx,xtd +

n

2
gsx,xtd

]gsx,xtd
]x

G
+

1

2

]2

]x2g2sx,xtdJPsxt,t − tux,td. s17d

We will refer to Eqs.s15d and s16d as delay Fokker-Planck
equations. They have first been derived by Guillouzicet al.
f59g using Ito’s stochastic equation and can also be derived
using a stepwise representation of stochastic processes with
time delays f62g. Multiplying Eq. s13d with Psxt ,t−td
=kd(xt−Xst−td)l and integrating the result with respect to
xt, we get the evolution equation

]

]t
Psx,tux8,t8d =E

V

dxtL̂sx,¹x,xtd 3 Psx,t;xt,t − tux8,t8d.

s18d

Multiplying Eq. s18d with Psx8 ,t8d=kd(x8−Xst8d)l, it follows
that the joint probability density evolves like

]

]t
Psx,t;x8,t8d =E

V

dxtL̂sx,¹x,xtdPsx,t;xt,t − t;x8,t8d.

s19d

This relation has been previously derived inf64g using the
stepwise representation of stochastic processes with time de-
lays mentioned earlier. In the following sections, we will use
the delay Fokker-Planck equations15d for Psx,td in order to
determine the first-order statistics ofXstd. Likewise, we will
use the delay Fokker-Planck equationss18d and s19d for
Psx,t ux8 ,t8d andPsx,t ;x8 ,t8d for the purpose of data analy-
sis and in order to determine the second-order statistics of
Xstd.

A. First-order statistics and perturbation theory

1. Perturbation theory for stationary probability densities

In what follows, we assume that the time-delayed feed-
back of a system interacts only weakly with the system dy-
namics such that the drift forceh of the system can be de-
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composed intohsx,xtd=hs0dsxd+hs1dsx,xtd, wherehs1d can be
regarded as a small perturbation. That is, we deal with per-
turbation theory and assume that the orders of magnitude are
hs0d~Os0d andhs1d~Os1d. For the sake of convenience, we
put gsx,xtd=gs0dsxd~Os0d sfor a more general case, see Ap-
pendix Ad. Then, Eq.s1d becomes

]

]t
Xstd = hs0d

„Xstd… + hs1d
„Xstd,Xst − td… + g„Xstd…Gstd.

s20d

Let us decompose the operatorF̂ like F̂=F̂s0d+F̂s1d with

F̂s0d = −
]

]x
Fhs0dsxd +

n

2
gs0dsxd

]gs0dsxd
]x

G +
1

2

]2

]x2fgs0dsxdg2,

s21d

F̂s1d = −
]

]x
E

V

dxth
s1dsx,xtdPsxt,t − tux,td s22d

such thatF̂s0d~Os0d and F̂s1d~Os1d. Furthermore,Psx,td
andPsx,t ux8 ,t8d may be decomposed like

s23d

Psx,tux8,t8d = Ps0dsx,tux8,t8d + esx,tux8,t8d + Os2d. s24d

Here, the orders of magnitude arePs0dsx,td ,Ps0dsx,t ux8 ,t8d
~Os0d, and esx,td ,esx,t ux8 ,t8d~Os1d. The functionx de-
serves special attention.x is a term of second-orderfi.e., we
havex~Os2dg but it does not contain all possible second-
order terms. The explicit definition ofx will be given below.
Substituting Eqs.s23d and s24d into Eq. s16d and collecting
all terms of zeroth and first order gives us

]

]t
Ps0dsx,td = F̂s0dPs0dsx,td, s25d

]

]t
esx,td = F̂s0desx,td −

]

]xFEV

dxth
s1dsx,xtdPs0dsxt,t

− tux,tdPs0dsx,tdG . s26d

Furthermore, it is clear that the unperturbed transition prob-
ability density is defined by

]

]t
Ps0dsx,tux8,t8d = F̂s0dPs0dsx,tux8,t8d. s27d

In addition, we require thatx satisfies the evolution equation

]

]t
xsx,td = F̂s0dxsx,td −

]

]x
E

V

dxth
s1dsx,xtdPs0dsxt,t − tux,td

3fesx,td + xsx,tdg. s28d

From Eq.s28d we see thatx is a term of second-order, al-

thoughx does not account for all second-order contributions.
Therefore, the expressionPs0dsx,td+esx,td+xsx,td is only
correct up to first-order terms, which is the reason why in Eq.
s23d further terms ofOs2d occur on the right-hand side. We
consider now the evolution of the probability density
Ps1dsx,td, which has been defined in Eq.s23d by Ps1dsx,td
=Ps0dsx,td+esx,td+xsx,td. From Eqs.s25d, s26d, ands28d, it
follows that

]

]t
Ps1dsx,td = fF̂s0d + F̂s1,0dgPs1dsx,td s29d

with

F̂s1,0d = −
]

]x
E

V

dxth
s1dsx,xtdPs0dsxt,t − tux,td s30d

and Psx,td=Ps1dsx,td+Os2d. This evolution equation can be
solved in the stationary case. In the stationary case,
Ps0dsx,t ux8 ,t8d given by Eq.s27d corresponds to the transi-
tion probability density of a stationary Markov diffusion pro-
cesses, which implies thatPs0dsx,t ux8 ,t8d depends only on
ut− t8u f73g. In particular, we find the relationship

Pst
s0dsxt,t − tux,td = Pst

s0dsxt,t + tux,td, s31d

which should be regarded as one of the key ingredients of
our perturbation theoretical approach to stochastic systems
with time delays. From Eqs.s29d ands31d, it follows that the
stationary solutionPstsxd is given by

0 = fF̂s0d + F̂st
s1,0dgPst

s1dsxd s32d

with

F̂st
s1,0d = −

]

]x
E

V

dxth
s1dsx,xtdPst

s0dsxt,t + tux,td s33d

and Pstsxd=Pst
s1dsxd+Os2d. Introducing the stationary prob-

ability currentJ=const and the delay-induced drift given by

h̃s1dsxd =E
V

dxth
s1dsx,xtdPst

s0dsxt,t + tux,td, s34d

Eq. s32d can equivalently be expressed as

J = Fhs0dsxd +
n

2
gs0dsxd

dgs0dsxd
dx

+ h̃s1dsxdGPst
s1dsxd

−
1

2

d

dx
fgs0dsxdg2Pst

s1dsxd. s35d

From this relation, the stationary probability densityPst
s1dsxd

of the stochastic process defined by Eq.s20d can conve-
niently be determined using the techniques developed for
univariate ordinary Fokker-Planck equationsf58,71g. In clos-
ing these considerations, we would like to note that Eq.s35d
can be generalized to stochastic systems with noise ampli-
tudes that depend on time-delayed state variables—as shown
in Appendix A.
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2. Moments and variance

Recall thatPst
s1dsxd is the first-order approximation of the

stationary probability densityPstsxd: Pstsxd=Pst
s1dsxd+Os2d.

Therefore, all momentskXnlst
s1d computed fromPst

s1dsxd are
first-order approximations of the momentskXnlst of Pstsxd.
Let sst

2s1d denote the first-order approximation of the variance
sst

2 of Pstsxd. Then, sst
2s1d may be computed fromsst

2s1d

=kX2lst
s1d−kXlst

s0dkXlst
s1d. Alternatively, we may use

sst
2s1d = kX2lst

s1d − fkXlst
s1dg2. s36d

Both expressions differ fromsst
2 only by terms of second and

higher order:sst
2 =sst

2s1d+Os2d.

3. Limiting casest\0 and t\`

For t→0, Eq. s35d reduces to

J = Fhs0dsxd +
n

2
gs0dsxd

]gs0dsxd
]x

+ hs1dsx,xdGPst
s1dsxd

−
1

2

]

]x
fgs0dsxdg2Pst

s1dsxd. s37d

This equation defines the exact stationary probability density
of the stochastic process given by Eq.s20d for t=0. That is,
we do not obtain a first-order approximation of the problem
without delay but we recover the exact solution,

lim
t→0

Pst
s1dsxd = Pstsxd. s38d

The reason for this is that fort=0, Eqs.s25d, s26d, ands28d
read

]

]t
Ps0dsx,td = F̂s0dPs0dsx,td, s39d

]

]t
esx,td = F̂s0desx,td −

]

]x
hs1dsx,xdPs0dsx,td, s40d

]

]t
xsx,td = F̂s0dxsx,td −

]

]x
hs1dsx,xdfesx,td + xsx,tdg.

s41d

If we add this equation up, we see thatPs1dsx,td=Ps0dsx,td
+esx,td+xsx,td satisfies exactly the Fokker-Planck equation
of the nondelayed problem. It is also clear that if we neglect
the functionx, then Eqs.s39d and s40d do not add up to the
Fokker-Planck equation of the nondelayed problem. There-
fore, the functionxsx,td plays a crucial role here.

Let us now assume that for the unperturbed system, a
stationary solutionPst

s0d exists. Then fort→` we have
Pst

s0dsxt ,t+t ux,td=Pst
s0dsxtd. Consequently, in this limiting

case the delay-induced drifts34d reads

h̃`
s1dsxd =E

V

dxth
s1dsx,xtdPst

s0dsxtd s42d

and the stationary probability densityPst
s1dsxd can be obtained

from Eqs.s35d ands42d. Since the noise-induced drifts42d is

independent oft, the stationary probability densityPst
s1dsxd

becomes independent oft in the limit t→`.

4. Vanishing probability current

Finally, let us consider stochastic systems with time-
delayed feedback for whichJ=0 holds in the stationary case
se.g., systems subjected to natural boundary conditionsd.
Then, from Eq.s37d it follows that the stationary solution
Pst

s1dsxd is given by

Pst
s1dsxd =

2

Zg0
2sxd

3exp52Ex

dx8

hs0dsx8d +
n

4

dg0
2sx8d
dx8

+ h̃s1dsx8d

fgs0dsx8dg2 6 ,

s43d

whereZ is a normalization constant. In particular, if Eq.s20d
involves only additive noise, that is, if we have

d

dt
Xstd = hs0d

„Xstd… + hs1d
„Xstd,Xst − td… + ÎQGstd, s44d

then we get the Boltzmann distribution

Pst
s1dsxd =

1

Z8
expH−

2fVs0dsxd + Ṽs1dsxdg
Q

J s45d

that involves the potentialsVs0dsxd=−exdx8hs0dsx9d and

Ṽs1dsxd−exdx8h̃s1dsx8d and the normalization constantZ8.

B. Examples

1. Natural boundary conditions: Perturbed Ornstein-Uhlenbeck
processes

An important class of systems can be described by delay
differential equations of the form dXstd /dt=−aXstd+h(Xst
−td) with a.0 f47g. Let us assume thatsid X is defined on
the real line si.e., we haveV=Rd, sii d the impact of the
feedback loop given byh is weak by comparison with the
linear force −aX, andsiii d in addition to −aX andh, there is
an additive fluctuating force. Then, we are dealing with a
perturbed Ornstein-Uhlenbeck process defined by

d

dt
Xstd = − aXstd + hs1d

„Xst − td… + ÎQGstd. s46d

The unperturbed transition probability density
Ps0dsx,t ux8 ,t8d corresponds to the transition probability den-
sity of an Ornstein-Uhlenbeck process with damping con-
stanta and reads

Ps0dsx,tux8,t8d =Î 1

2pKst − t8d
expH−

fx − x8e−ast−t8dg2

2Kst − t8d
J
s47d
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with Kst− t8d=Qf2ag−1f1−exph−2ast− t8djg f58,71g. Conse-
quently, the delay-induced drifts34d reads

h̃s1dsxd =Î 1

2pKstdEV

dxth
s1dsxtdexpH−

fxt − xe−atg2

2Kstd J
s48d

and the corresponding potential is given by

Ṽs1dsxd = −Î 1

2pKstdE
x

dx8E
V

dxth
s1dsxtd

3 expH−
fxt − x8e−atg2

2Kstd J . s49d

Since we haveV=R and natural boundary conditions hold,
in the stationary case we haveJ=0, and Eq.s44d with
hs0dsxd=−ax and hs1dsx,xtd=hs1dsxtd applies. Therefore,
Pst

s1dsxd is found as

Pst
s1dsxd =

1

Z8
exp5−

2fax2/2 − f2pKstdg−1/2Ex

dx8E
V

dxth
s1dsxtdexpgH−

fxt − x8e−atg2

2Kstd J
Q

6 s50d

and moments are given by

kXnlst
s1d =

1

Z8
E

V

dxxn exp5−

2fax2/2 − f2pKstdg−1/2Ex

dx8E
V

dxth
s1dsxtdexpgH−

fxt − x8e−atg2

2Kstd J
Q

6 . s51d

2. Comparison with exact results: Linear stochastic delay
differential equation

Let us illustrate the perturbation theoretical approach for a
system for which an exact analytical solution exists. To this
end, we consider the linear model

d

dt
Xstd = − aXstd − bXst − td + ÎQGstd s52d

with XPV=R and a.b.0. In this case, the stationary
probability density is given by

Pstsxd =Î 1

2psst
2 expH−

x2

2sst
2J s53d

with

sst
2 =

Q

2
S1 + bv−1 sinhsvtd

a + b coshsvtd D s54d

with v=Îa2−b2 f63,65g. For b!a, perturbation theory ap-
plies. In this case, we havehs0dsxd=−ax and hs1dsx,xtd=
−bxt and Eq.s48d gives us the delay-induced drift

h̃s1d = − bxe−at. s55d

The potentials satisfyVs0dsxd+Ṽs1dsxd=fa+be−atgx2/2 and
from Eq. s50d we obtain

Pst
s1dsxd =Îa + be−at

pQ
expH−

sa + be−atdx2

Q
J . s56d

We see that fort→0, we obtain the exact stationary solution
of the nondelayed problemscf. Sec. II A 3d. Let us demon-
strate that fort.0, Eq. s56d corresponds to the first-order
approximation of the exact stationary solutions53d by com-
paring the moments of the Gaussian distributionss53d and
s56d. SincekXlst=kXlst

s1d=0 holds, we need to consider only
the variances. The variancesst

2s1d=kX2lst
s1d computed withPst

s1d

is given by

sst
2s1d =

Q

2sa + be−atd
. s57d

Expanding this expression with respect tob yields

sst
2s1d =

Q

2a
S1 −

be−at

a
D + Osb2d. s58d

Likewise, expanding the variances54d with respect tob leads
to

sst
2 =

Q

2a
S1 −

be−at

a
D + Osb2d. s59d

That is, the variances of both distributions differ only by
terms of second and higher order. Since for Gaussian distri-
butions with vanishing mean all higher even moments can be
expressed in terms of powers of variances, we conclude that

T. D. FRANK PHYSICAL REVIEW E 71, 031106s2005d

031106-6



all higher even moments of Eqs.s53d ands56d are equivalent
up to termsOs2d, which implies that the distributions56d
indeed describes a first-order approximation of the exact
Gaussian solutions53d.

3. Shifts of fixed points: tanh model

In life sciences, sigmoidal conversion functions with satu-
ration domains are often modeled by means of tanh and
arctan functions. Therefore, we consider next a stochastic
system subjected to a time-delayed feedback loop that in-
volves such a sigmoidal conversion function. More explic-
itly, we study the stochastic process defined by

d

dt
Xstd = − aXstd − b tanhfc„Xst − td − u…g + ÎQGstd

s60d

with XPV=R anda,c,u.0 andb,0 sfor similar models,
seef19,22,25,74gd.

In what follows, we will briefly show that the feedback
mechanism foruÞ0 can result in a shift of the fixed point of
the unperturbed system. In this context, it is important to
realize that fora.0 andb,0, the model describes the in-
terplay of two contradictory forces: an attractive force −aX
and a repulsive force −b tanhs·d. Let us consider now the
caseQ=0. Let Xst denote the stationary solution forQ=0.
For u.0, the tanh function is shifted to the right and a
system that is located close to the origin is driven to negative
state values. Therefore, the fixed pointXst is shifted away
from zero to negative values:Xst,0. Let ustd denote a small
deviation from the fixed point:ustd=Xstd−Xst. Then, we ob-
tain du/dt=−austd−b8ust−td and one can show that for
ubuc,a and arbitraryu.0, we haveub8u,a. This implies
that the fixed pointXst is stablef1,68,75g. That is, the deter-
ministic system is monostable. In what follows, we require
that the inequalityubuc,a holds. The caseubuc.a will be
considered in Sec. II B 4 below.

We assume now thatubu is small such that the time-
delayed feedback yields only a perturbation of the overall
dynamics. ForQ.0, we can apply the perturbation theoret-
ical approach developed in Sec. II A. We havehs0dsxd=−ax
and hs1dsx,xtd=−b tanhfcsxt−udg. From Eq.s48d, it follows
that

h̃s1dsxd = − bÎ 1

2pKstdEV

dxt tanhfcsxt − udg

3expH−
fxt − xe−atg2

2Kstd J s61d

with Kstd=Qf2ag−1f1−exph−2astdjg. In particular, fort=0

we haveh̃1,0sxd=−b tanhfcsx−udg, whereas fort→` from
Eq. s42d it follows that

h̃`
s1dsxd = − bÎ a

pQ
E

V

dxt tanhfbsxt − udgexpH−
axt

2

Q
J .

s62d

Note thath̃`
s1d does not depend onx. Using some geometrical

considerations, we see that foru=0 we haveh̃`
s1d=0, whereas

for u.0 we have h̃`
s1d,0. The potentialsVs0dsxd and

Ṽs1dsxd are given by

Vs0dsxd + Ṽs1dsxd =
ax2

2
+ bÎ 1

2pKstd

3 E
0

x

dx8E
V

dxt tanhfbsxt − udg

3expH−
fxt − x8e−atg2

2Kstd J , s63d

where we have chosen the lower boundary of integration

such thatṼs1ds0d=0. Fort=0, the potentials read

Vs0dsxd + Ṽ0
s1dsxd =

ax2

2
+

b

c
ln coshfcsx − udg −

b

c
ln coshfcug,

s64d

whereas in the limitt→` the potentials are given by

Vs0dsxd + Ṽ`
s1dsxd =

ax2

2
− h̃`

s1dx. s65d

Examples forVs0dsxd+Ṽs1dsxd are depicted in Fig. 3. We see
that for t.0, the system is driven to the left-hand side just
as in the case oft=0.

The stationary solutionPst
s1d can be computed from Eq.

s50d and reads

FIG. 3. Total potentialVtotsxd=Vs0dsxd+Ṽs1dsxd of the tanh model
s61d computed from Eq.s64d for t=0, t=2, andt=` sfrom bottom
to topd. Other parameters area=0.5, b=−0.1, c=2.0, u=1.0, and
Q=1.0.
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Pst
s1dsxd =

1

Z8
expH−

2

QFax2

2
+ bÎ 1

2pKstdE0

x

dx8

3E
V

dxt tanhfcsxt − udg

3expS−
fxt − x8e−atg2

2Kstd DGJ . s66d

In the limiting casest→0 andt→`, we have

Pst,t=0
s1d sxd =

1

Z0
expH−

2

Q
Fax2

2
+

b

c
ln coshfcsx − udg

−
b

c
ln coshscudGJ , s67d

Pst,t→`
s1d sxd =

1

Z`

expH−
2

Q
Fax2

2
− h1,̀ xGJ , s68d

where Z0 and Z` are normalization constants. Note that
Pst,t=0

s1d is the exact stationary solution of the nondelayed
problem scf. Sec. II A 3d. Examples forPst,t=0

s1d , Pst
s1d, and

Pst,t→`
s1d are given in Fig. 4. Solving the tanh model numeri-

cally, we see that for the selected parameters the probability
densitiesPst

s1dsxd describe the system quiet well.

4. A bistable stochastic system with time delay

Bistable stochastic systems involving time-delayed feed-
back loops that interact weakly with the system dynamics
have previously been studied in terms of master equations
that describe transitions between the two available stable
statesf48,69,70g. In contrast to these studies, we will apply
the Fokker-Planck approach. To this end, we consider again
the tanh models61d. For u=0, t=0, and Q=0, the tanh
model has a stationary point atXst=0 and the linearization at
this point yields dustd /dt=subuc−adustd. We see that for

ubuc.a, the stationary point is unstable. In fact, forubuc.a
the deterministic model describes a bistable system with two
stable stationary points atXstÞ0. In order to focus on the
essentials of a bistable stochastic system with time delay, we
consider a special case of the tanh model: the limiting case
c→`. In this case, the tanh function becomes the sgn func-
tion. That is, we have limc→` tanhsczd=sgnszd with sgnszd
=1 for z.0, sgnszd=0 for z=0, and sgnszd=−1 for z,0.
The corresponding deterministic model reads dXstd /dt=
−aXstd−b sgnfXstdg and exhibits an unstable fixed point at
Xst=0 and two stable fixed points atXst= ± ubu /a. For c→`,
the stochastic tanh model with time delay given by Eq.s61d
becomes

d

dt
Xstd = − aXstd − b sgnfXst − tdg + ÎQGstd s69d

with XstdPV=R anda.0, b,0. In what follows, we will
analyze this equation for small parametersubu such that the
perturbation theoretical approach of Sec. II A can be applied.
Accordingly, we have hs0dsxd=−ax and hs1dsx,xtd=
−b sgnfxtg and Eq.s48d reads

h̃s1dsxd = − bÎ 1

2pKstdEV

dxt sgnsxtd

3expH−
fxt − xe−atg2

2Kstd J s70d

with Kstd=Qf2ag−1f1−exph−2astdjg. Using the error func-
tion defined by erfsxd=fÎ2pg−1e−`

x exph−z2/2jdz, the noise-
induced drifts70d can be written as

h̃s1dsxd = − bF1 − 2 erfS−
xe−at

2KstdDG . s71d

From Eq. s69d, it is clear that fort=0 we haveh̃0
s1dsxd=

−b sgnsxd. From Eq.s42d, it follows that for t→` we have

h̃`
s1dsxd=0. Note that these two limiting cases can also be

deduced from Eq.s71d if we take into account that

e−at

2Kstd
=Î 2a

Qfexph2atj − 1g
s72d

holds and if we considert→0 with limA→`f1−2 erfs−Azdg
=sgnszd instead oft=0 on the one hand, andt→` with
erfs0d=1/2 on the other hand. The potentialsVs0dsxd
+Ṽs1dsxd satisfy

Vs0dsxd + Ṽs1dsxd =
ax2

2
+ bFx − 2E

0

x

erfS−
x8e−at

2KstdDdx8G .

s73d

In the limiting casest→0 andt→`, we have

Vs0dsxd + Ṽ0
s1dsxd =

ax2

2
+ buxu, s74d

FIG. 4. Solid lines represent stationary probability densities
Pst

s1dsxd of the tanh models61d computed from Eq.s67d for t=0, t
=2, andt=` sfrom bottom to topd. Other parameters as in Fig. 3.
Diamonds represent exact stationary distributionsPstsxd of Eq. s61d
obtained by solving Eq.s61d numerically using an Euler forward
schemef58g in combination with a Box-Muller algorithm fort=0,
t=2, andt=20 ssingle time stepDt=0.01, number of realizations
N=108d.

T. D. FRANK PHYSICAL REVIEW E 71, 031106s2005d

031106-8



Vs0dsxd + Ṽ`
s1dsxd =

ax2

2
. s75d

Some examples of the potentialVtotsxd=Vs0dsxd+Ṽs1dsxd are
shown in Fig. 5.

For t=0 we have a double-well potential, whereas fort
→` we get a monostable parabolic potential. Let us deter-
mine the critical valuet* for which the double-well potential
vanishes. The double-well potential vanishes if the second

derivative ofVs0dsxd+Ṽs1dsxd vanishes atx=0. Alternatively,
we may say that the double-well potential vanishes if the first

derivative of the forcehs0dsxd+ h̃s1dsxd at x=0 vanishes. Using
Eq. s70d, we find that

U d

dx
fhs0dsxd + h̃s1dsxdgU

x=0
= − a − 2bÎ a

Qpfexph2atj − 1g
.

s76d

Then,t* can be computed by equating the left-hand side to
zero. Thus, we get

t* =
1

2a
lnS1 +

4b2

paQ
D . s77d

The stationary distributionPst
s1dsxd can be obtained from the

potentialsVs0dsxd and Ṽs1dsxd and reads

Pst
s1dsxd =

1

Z8
expH−

2

QFax2

2

+ bSx − 2E
0

x

erfH−
x8e−at

2KstdJdx8DGJ , s78d

see Eqs.s45d and s50d. In particular, we have

Pst,t=0
s1d sxd =

1

Z0
expH−

2

Q
Fax2

2
+ buxuGJ , s79d

Pst,t→`
s1d sxd =

1
ÎpQ

expH−
ax2

Q
J s80d

in the limits t=0 andt→`. Note that Eq.s79d is the exact
stationary solution of Eq.s69d with t=0 scf. Sec. II A 3d.
The stationary distributionPst

s1dsxd for several values oft is
depicted in Fig. 6. Numerical simulations of the stochastic
delay differential equations69d have been carried out as well.
Figure 6 illustrates that for the selected parameters there is a
good match between the numerical results and the first-order
approximationPst

s1dsxd of the stationary distribution of Eq.
s69d.

5. Periodic boundary conditions: Sine loop with time delays

Let us turn now to stochastic systems with periodic state
variables that involve time-delayed self-regulating feedback
mechanisms. Prominent examples are laser systems with op-
tical feedback described by the Ikeda equation and self-
regulated voltage-controlled oscillatorsssee the Introduction
for referencesd. Let XPV=f−T/2 ,T/2g denote a periodic
variable with periodT.0. Then, the sine loop with time-
delayed feedbackf54,56g and additive noise is described by

d

dt
Xstd = − e sinFmp

T
Xst − tdG + ÎQGstd s81d

with m=1,2, . . .. Weconsider the case in whiche is small
such that the time-delayed feedback results only in a pertur-
bation of the diffusion process dX/dt=ÎQGstd subjected to
periodic boundary conditions. In this case, we find that
hs0dsxd=0 and hs1dsx,xtd=−e sinfmpxt /Tg. Furthermore,
Ps0dsx,t ux8 ,t8d is the transition probability density of a
Wiener process defined by

]

]t
Ps0dsx,tux8,t8d =

Q

2

]2

]x2Ps0dsx,tux8,t8d s82d

satisfying periodic boundary conditions. We findf71g

FIG. 5. Total potentialVtotsxd=Vs0dsxd+Ṽs1dsxd of the double-
well potential models69d computed from Eq.s73d for t=0, t
=0.003,t=0.1, andt=` sfrom bottom to topd. Other parameters
area=2.0, b=−0.2, andQ=1.0. Critical delay:t* <0.006fsee Eq.
s77dg. For t,t* we are dealing with bistable potentialsssee, e.g.,
t=0.003d, whereas fort.t* we are dealing with monostable po-
tentialsssee, e.g.,t=0.1d.

FIG. 6. Solid lines represent stationary probability densities
Pst

s1dsxd of the bistable models69d computed from Eq.s78d for t
=0, t=0.003,t=0.1, andt=` sfrom bottom to topd. Other param-
eters as in Fig. 4. Diamonds represent exact stationary distributions
Pstsxd of Eq. s69d obtained by solving Eq.s69d numerically using an
Euler forward schemef58g in combination with a Box-Muller algo-
rithm for t=0, t=0.003, t=0.1, andt=5 sDt=0.001 for t=0, t
=0.003;Dt=0.01 fort=0.1, t=5; N=108d.
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Ps0dsx,tux8,t8d = 1 + o
n=1

`

expH−
Qn2p2st − t8d

2T2 J
3FcosSnp

T
xDcosSnp

T
x8D

+ sinSnp

T
xDsinSnp

T
x8DG . s83d

Consequently, the delay-induced drifts34d is given by

h̃s1dsxd = − ee−Qm2p2t/f2T2g sinSmp

T
xD . s84d

Since we are dealing with periodic boundary conditions and
hs1dsxtd is a T-periodic function, the stationary probability
currentJ vanishes in Eq.s35d and Eq.s45d can be used in
order to get

Pst
s1dsxd =

1

Z8
expH2eTe−Qm2p2t/f2T2g

Qmp
cosSmp

T
xDJ . s85d

Let us consider the limitst→0 andt→`. Fort=0 from Eq.

s81d it follows that h̃s1dsxd=−e sinsmp /Txd. For t→` from

Eq. s42d it follows that h̃s1dsxd=0. Note that these limiting
cases can also be computed from Eq.s84d. Accordingly, for
t=0 we have

Pst,t=0
s1d sxd =

1

Z0
expH 2eT

Qmp
cosSmp

T
xDJ , s86d

which corresponds to the exact stationary solution of Eq.
s81d with t=0 scf. Sec. II A 3d. For t→`, we obtain the
uniform distribution Pst

s1d=1/T. The probability density
Pst

s1dsxd is shown in Fig. 7 for several values oft.

C. Second-order statistics, correlation functions,
and data analysis

1. Correlation functions and second-order statistics

Equations19d can be used to determine correlation func-
tions. To this end, we consider the stationary case in which
the joint probability densityPsx,t ;x8 ,t8d depends only on
the time differenceu= t− t8 for an arbitrary reference timet8.
If we put t8=0, Eq.s19d becomes

]

]u
Pstsx,u;x8,0d =E

V

dxtL̂sx,¹x,xtdPstsx,u;xt,u − t;x8,0d.

s87d

The evolution of the correlation function Csud
=kA(Xsud)B(Xs0d)lst involving two functionsA andB can be
determined by multiplying Eq.s87d with Asxd and Bsx8d.
Integrating with respect tox andx8 and using partial integra-
tions, we obtain

d

du
Csud =KdA„Xsud…

dx
Fh„Xsud,Xsu − td…

+
n

4

dg2
„Xsud,Xsu − td…

dx
GB„Xs0d…L

+Kd2A„Xsud…
dx2 g2

„Xsud,Xsu − td…B„Xs0d…L .

s88d

In general, this evolution equation does not provide us with a
closed description forCsud. In special cases, however, the
right-hand side of Eq.s88d can expressed in terms ofCsud
like f63,64g

d

du
Csud = ffCsud,Csu − tdg. s89d

In these cases, the correlation functionCsud can be computed
from Eq.s89d and appropriately defined boundary conditions
for Cs0d and dCs0d /du. For details, seef63,64g.

2. Data analysis

Using the Fokker-Planck perspective for stochastic sys-
tems with time delays, the drift functionhsx,yd and the noise
amplitudegsx,yd can be estimated from experimental data.
Although this technique has already been discussed in previ-
ous studiesf63,76g, we would like to dwell on this issue in
this section. In particular, we will show how the data-
analysis technique proposed inf63,76g is related to the ex-
tended phase-space approach leading to the delay Fokker-
Planck equations18d. In addition, we will elucidate the
physical meaning of the expressions used in the data-analysis
technique and we will address the implementation of the
data-analysis technique.

To begin with, let us determine the evolution ofkXstdl
under the condition thatXst8d=x8 andXst−td=xt. Multiply-
ing Eq. s18d with x and integrating with respect tox, we get

FIG. 7. Solid lines represent stationary probability densities
Pst

s1dsxd of the sine loop models81d computed from Eq.s85d for t
=0, t=0.5, andt=1.0 sfrom top to bottomd. Other parameters are
e=0.1, m=1, T=1, andQ=0.3. Diamonds represent exact station-
ary distributionsPstsxd of Eq. s81d obtained by solving Eq.s81d
numerically using an Euler forward schemef58g in combination
with a Box-Muller algorithm for the respectivet values sDt
=0.01,N=108d.
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U d

dt
kXstdlU

Xst8d=x8,Xst−td=xt

=E
V

dxFhsx,xtd

+
n

2
gsx,xtd

]gsx,xtd
]x

G
3 Psx,tux8,t8;xt,t − td

s90d

sassuming that surface terms arising due to partial integration
vanishd. In the limiting case t→ t8 for which
Psx,t ux8 ,t8 ;xt ,t−td=dsx−x8d holds, Eq.s90d reduces to

U d

dt
kXstdlU

Xstd=x,Xst−td=xt

= hsx,xtd +
n

2
gsx,xtd

]gsx,xtd
]x

.

s91d

Likewise, multiplying Eq.s18d with x2, one can show that
the relation

U d

dt
kX2stdlU

Xstd=x,Xst−td=xt

= 2xFhsx,xtd +
n

2
gsx,xtd

]gsx,xtd
]x

G
+ g2sx,xtd s92d

holds. Combining Eqs.s91d and s92d leads to

d

dt
fkX2stdl − kXstdl2gXstd=x,Xst−td=xt

= g2sx,xtd, s93d

see alsof77g. Equationss91d and s93d are open to an inter-
esting interpretation. Accordingly, we see that the first mo-
ment M1std is related to the drift functionh, whereas the
variances2std is related to the noise amplitudeg. More pre-
cisely, the conditional changes of the first momentM1std and
the variances2std determine drift and diffusion,

U d

dt
M1U

Xstd=x,Xst−td=xt

= hsx,xtd +
n

2
gsx,xtd

]gsx,xtd
]x

,

s94d

U d

dt
s2U

Xstd=x,Xst−td=xt

= g2sx,xtd, s95d

where it is understood that first the time derivatives are com-
puted and then the conditional averages are carried out.

In order to apply these relations to experimental data and
implement them on a computer, we need to account for the
properties of experimental data sets. Real time series are re-
corded with a sampling frequencyf. Therefore, we express
the differential quotient d/dt as dAstd /dt=fAst+Dtd
−Astdg /Dt, where Dt=1/ f should be small. Furthermore,
since experimental data sets contain only a finite number of
data, we can determine the drift function and noise amplitude
only with a finite resolutionDx. As a result, Eqs.s91d and
s93d become

1

Dt
ukXst + Dtd − XstdluXstdPfx,x+Dxg,Xst−tdPfxt,xt+Dxg < hsx,xtd

+
n

2
gsx,xtd

]gsx,xtd
]x

, s96d

1

Dt
ukfXst + Dtd − Xstdg2luXstdPfx,x+Dxg,Xst−tdPfxt,xt+Dxg < g2sx,xtd.

s97d

As stated in the Introduction, the average corresponds to an
ensemble average involving the realizationsXistd of the state
variableXstd. Given a data set withN realizations, we finally
get an implementation of Eqs.s91d and s93d in terms of

1

Dt

oiPIsx,xtd fXist + Dtd − Xistdg

oiPIsx,xtd 1
< hsx,xtd

+
n

2
gsx,xtd

]gsx,xtd
]x

, s98d

1

2Dt

oiPIsx,xtd fXist + Dtd − Xistdg2

oiPIsx,xtd 1
<

g2sx,xtd
2

, s99d

whereIsx,xtd is the set of indices that belong to the realiza-
tions Xi satisfying the constraintXistdP fx,x+Dxg ,Xist−td
P fxt ,xt+Dxg. If the system is ergodic and stationary, we
may replace the ensemble average by means of a time aver-
age. In this case, we may use a single stationary trajectory
composed of the data pointsXi =Xstid with ti = iDt+ t0. Then,
as opposed to Eqs.s98d ands99d, we obtain an implementa-
tion of Eqs.s91d and s93d in terms of

1

Dt

oiPIsx,xtd fXi+1 − Xig

oiPIsx,xtd 1
< hsx,xtd +

n

2
gsx,xtd

]gsx,xtd
]x

,

s100d

1

2Dt

oiPIsx,xtd fXi+1 − Xig2

oiPIsx,xtd 1
<

g2sx,xtd
2

, s101d

whereIsx,xtd is the set of indices that belong to the dataXi

satisfying the constraintXi P fx,x+Dxg ,Xi−mP fxt ,xt+Dxg
and the delayt is given byt=mDt. For examples and further
details, seef63,76g. Note also that the data-analysis method
based on Eqs.s91d–s101d generalizes the data-analysis
method for Markov diffusion processes that was introduced a
while agof78,79g and since then seems to attract more and
more researchersssee, e.g.,f80–85g and references thereind.

In closing these considerations, let us dwell on the imple-
mentation of the data-analysis approach. First, above we
have written conditional averages in terms of averages for
random variables that fall into particular small intervalssor
boxesd. Basically, this means that we have expressed prob-
ability densities in terms of box estimatorssor, mathemati-
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cally speaking, in terms of indicator functionsd such that a
probability density Psxd is written like Psxd
<oixisx,xi ,Dxdpisxi ,Dxd, wherepi is the probability to find
a random variable in the intervalfxi ,xi +Dxg andxi equals 1
for xP fxi ,xi +Dxg and is zero otherwise. It is clear that this
is only one possible choice of an estimator function. One
may use different estimators depending on the observedsor
expectedd statistics of the system under consideration. Sec-
ond, one should realize that the number of available data
points determines the accuracy of the result obtained by the
data analysis method because in order to determine the drift
function and noise amplitude at a particular state with coor-
dinatessx,yd, only data points close to this point can be
evaluatedse.g., see the box-estimator techniqued. Therefore,
if there are only few data points available, we may confine
ourselves to determine only expansion coefficients of drift
functionsh and noise amplitudesg. Accordingly, one may
expand h and g into a set of functionsfisx,yd with
eV2fisx,ydfk

−1sx,yddxdy=dik. The expansion coefficients of
the functionsfi can then be determined by multiplying the
conditional averages occurring in the data analysis technique
ssee Sec. II C 2d by fi

−1 and integrating the results with re-
spect tox and y. In doing so, all available data points are
evaluated, not only those close to a particular statesx,yd. For
further details and examples, seef86g.

III. CONCLUSIONS

We have shown that delay Fokker-Planck equations pro-
posed by Guillouzicet al. can be derived by means of a
method that is frequently used in the theory of delay differ-
ential equations: the extended phase-space approach. Not
only do these delay Fokker-Planck equations describe the
evolution of transient probability densitiesPsx,td, but they
also describe the evolution of transition and joint probability
densities Psx,t ux8 ,t8d and Psx,t ;x8 ,t8d. Although delay
Fokker-Planck equations are not closed and consequently
cannot be solved by integration, they are very helpful tools
for the analysis of stochastic systems with time delays. For
example, as shown in Sec. II A, from the evolution equation
for Psx,td we have derived the stationary distributions of
stochastic systems that are perturbed by the impacts of time-
delayed feedback loops. This result is of particular impor-
tance because in this case we can treat analytically systems
that involve nonlinear drift force. Furthermore, as shown in
Sec. II C, from the evolution equation forPsx,t ;x8 ,t8d cor-
relation functions can be derived, whereas the evolution
equation forPsx,t ux8 ,t8d can be exploited in order to esti-
mate drift functions and noise amplitudes from experimental
data.

Let us briefly address some benefits and limitations of the
results derived in this study. First, the determination of sta-
tionary distributions of weakly perturbed stochastic systems
with time delays involves the transition probability densities
of the unperturbedsi.e., nondelayedd systems. Closed ana-
lytical expressions of such transition probability densities of
Markov diffusion processes can only be found in some spe-
cial cases, such as the Ornstein-Uhlenbeck processssee Sec.

II B 1d and the Wiener processssee Sec. II B 5d. However,
for small time differences, transition probability densities of
Markov diffusion processes can be written in terms of path
integral solutionsf58,87g, which implies that for small time
delays the required transition probability densities are avail-
able. In general, one may evaluate the eigenfunction expan-
sion of transition probability densities of Markov diffusion
processesf58,71g ffor an example, see Eq.s83dg. In doing so,
analytical expressions for stationary distributions that in-
volve infinite series of functions can be obtained. Second, the
perturbation theoretical approach yields correct results when
the time-delayed feedback results in the perturbation of a
reference state given by a stationary Markov diffusion pro-
cess. As we have illustrated explicitly in the example section
sSec. II Bd, this assumption holds for various systems. This
assumption, however, usually fails when we consider sys-
tems with time delays beyond their bifurcation threshold
se.g., beyond a Hopf bifurcation thresholdd.

APPENDIX A: PERTURBATION THEORETICAL
APPROACH TO SYSTEMS WITH TIME-DELAYED

MULTIPLICATIVE NOISE

Let us generalize some of the results obtained in Sec.
II A. To this end, we introduce the diffusion coefficientD2
=g2/2. Then, Eq.s1d reads

d

dt
Xstd = h„Xstd,Xst − td… + Î2D2„Xstd,Xst − td…Gstd.

sA1d

The total drift term occurring in the operatorL̂ fsee Eq.s14dg
now reads

D1sx,xtd = hsx,xtd +
n

2

]

]x
D2sx,xtd. sA2d

Next, we decomposeh andD2 like

hsx,xtd = hs0dsxd + hs1dsx,xtd, sA3d

D2sx,xtd = D2
s0dsxd + D2

s1dsx,xtd, sA4d

which implies that Eq.sA1d becomes

d

dt
Xstd = hs0d

„Xstd… + hs1d
„Xstd,Xst − td…

+ Î2fD2
s0d
„Xstd… + D2

s1d
„Xstd,Xst − td…gGstd.

sA5d

In line with the assumption that time-delayed feedback only
perturbs the system dynamics, we puths0d ,D2

s0d~Os0d and
hs1d ,D2

s1d~Os1d. In this case, we findD1=D1
s0d+D1

s1d with
D1

s0d~Os0d andD1
s1d~Os1d and

D1
s0dsxd = hs0dsxd +

n

2

]

]x
D2

s0dsxd, sA6d
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D1
s1dsx,xtd = hs1dsx,xtd +

n

2

]

]x
D2

s1dsx,xtd. sA7d

Just as in Sec. II A, we write the operatorF̂ fsee Eq.s17dg
like F̂=F̂s0d+F̂s1d. Then Eqs.s21d ands22d are generalized to

F̂s0d = −
]

]x
D1

s0dsxd +
]2

]x2D2
s0dsxd, sA8d

F̂s1d = −
]

]x
E

V

dxtD1
s1dsx,xtdPsxt,t − tux,td

+
]2

]x2E
V

dxtD2
s1dsx,xtdPsxt,t − tux,td. sA9d

It is clear that Eqs.s25d–s29d now hold when we replace Eq.
s30d by

F̂s1,0d = −
]

]x
E

V

dxtD1
s1dsx,xtdPs0dsxt,t − tux,td

+
]2

]x2E
V

dxtD2
s1dsx,xtdPs0dsxt,t − tux,td.

sA10d

Accordingly, the stationary distributionPst
s1dsxd is defined by

0=fF̂s0d+F̂st
s1,0dgPst

s1dsxd fsee Eq.s32dg with F̂s0d defined by Eq.
sA8d and

F̂st
s1,0d = −

]

]x
E

V

dxtD1
s1dsx,xtdPst

s0dsxt,t + tux,td

+
]2

]x2E
V

dxtD2
s1dsx,xtdPst

s0dsxt,t + tux,td sA11d

instead of Eq.s33d. Accordingly, Eq.s35d can be generalized
and reads

J = fD1
s0dsxd + D̃1

s1dsxdgPst
s1dsxd −

d

dx
fD2

s0dsxd + D̃2
s1dsxdgPst

s1dsxd

sA12d

with

D̃1
s1dsxd =E

V

dxtD1
s1dsx,xtdPst

s0dsxt,t + tux,td, sA13d

D̃2
s1dsxd =E

V

dxtD2
s1dsx,xtdPst

s0dsxt,t + tux,td. sA14d

As pointed out in Sec. II A, Eq.sA12d can be solved with
respect toPst

s1dsxd using standard techniques available for
conventional univariate Fokker-Planck equationsf58,71g.
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