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Delay Fokker-Planck equations, perturbation theory, and data analysis for nonlinear stochastic
systems with time delays
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We study nonlinear stochastic systems with time-delayed feedback using the concept of delay Fokker-Planck
equations introduced by Guillouzic, L'Heureux, and Longtin. We derive an analytical expression for stationary
distributions using first-order perturbation theory. We demonstrate how to determine drift functions and noise
amplitudes of this kind of systems from experimental data. In addition, we show that the Fokker-Planck
perspective for stochastic systems with time delays is consistent with the so-called extended phase-space
approach to time-delayed systems.
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. INTRODUCTION J
20 = hOX(O), X(t = 7)) + g(X(0), X(t - D)I'O, (1)

There are various examples of stochastic systems with
time-delayed feedback in the inanimate and animate world.
The reason for this is that many complex stochastic systemwhereX(t) describes a state variable> 0 is the time delay,
exhibit self-regulating control mechanisms in terms of feed-h(x,y) is the drift function, g(x,y) denotes a(state-
back loops. By means of such feedback loops, signals adependentnoise amplitude, and'(t) refers to a Langevin
other key quantitieésuch as information, matter, energy, and force[58] normalized to unity likg'(tH)['(t"))=&(t—t’) [here
so on are fed back from output to input interfaces. Usually, §(-) denotes the delta function and the bracKetslenote an
the transmission takes some time, which implies that the inensemble averageThe advantage of Eq1) is that it ap-
put signals are related to the output signals at earlier timespeals to our intuition. If we think of a stochastic system as a
In order to study the implications of feedback delays,system that is affected by a deterministic force on the one
we may regard feedback loops as simple transport mechdrand, and a fluctuating force on the other hand, then(Bg.
nisms that provide input variables in terms of time-delayedhicely corresponds to this picture, provided that we identify
output variables. In this case, the systems at hand can Bewith the deterministic force and the produgif with the
described in terms of stochastic systems with time-delayefluctuating force. The disadvantage of K@) is that it can
feedback. hardly be solved analytically in a direct way. That is, the

In life sciences, prominent examples of complex systemélérivation of analytical expressions for mean values and
with time delays are population dynamifk 2] (where de- Variances, g:orrelatlon funcno_ns, and probablllty dlstrlbuthns
lays are given by maturation timeghe spread and the dy- ©N the basis of Eq(l) in a direct way is often mathemati-

namics of infectious diseasg3| (where delays are related to cally involve_d. Asolution tp this problem can be easily found
the inactive infected phageneural networkg4-12), and for stochastic systems without delay. Fufx,y)=h(x) and

motor control systemgéwhere delays can be found in terms 9(x,y)=g(x), Eq. (1) reduces to a Langevin equatifss]. In

of signal transmission times between receptors, muscles, aﬁB'S case, analytical results can conveniently be derived in an

brain areas and in terms of receptor measurement timélgdireCt way, namely by solving the corresponding Fokker-
[13-18). In the latter context, breathirjd ], balancing 17] lanck equation, see Fig. 1. Therefore, at issue is to treat

= e ! ' . ’ stochastic systems with time delays in a similar way. That is,
standing[18-21], pointing talks[22,23, synchronized and

: . as shown in Fig. 1, the objective is to develop a Fokker-
coordinated movemen{4-26, and the pupil light reflex Planck perspective for systems described by @gand to

, ) i A atl.‘xploit this perspective in order to solve analytically the sto-
systems involving time delays are reviewed[#8]. In the  cpagtic delay differential equatiofl). The key step in this
inanimate nature, some examples of complex systems W'thagard has been carried out in a study by Guillowicl.
time delays are laser systems with optical feedd@&k-43 59] in which a delay Fokker-Planck equation for Efj) has
centered around the Ikeda equation and the Lang-KobayacBeen derived. Since then, several results have been obtained
equation44-47, VCSELs with time-delayed feedback con- from this Fokker-Planck perspectiy80—64 consistent with
trol [48,49, hydrodynamic problemg50-52, chemical sur-  alternative studies in which the stochastic delay differential
face reactions [53], and feedback-regulated voltage- equation (1) has been solved directly for linear systems
controlled oscillator§54—57,. [65—67]. So far, however, nonlinear stochastic systems with

In many cases, stochastic systems with time-delayed feedime delays have not been treated analytically in ger{éval
back can be described in terms of stochastic delay differerexceptions, see the small time delay approgg$i and the
tial equations of the form variable transformation approa¢6l,67).
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FIG. 2. lllustration of Eq.(5).

In contrast, expressions Iilgﬁ%*xn(s— 7)dW(s) with 7>0 can
only be interpreted according to the Ito calcu[@2]. As a
result, the multiplicative noise integral f}g(x(s),
X(s—7))dW(s) can be discretized with respect to tifiEl] in

two different ways: we can either use the Stratonovich rule
for the first argument of(x,y) and the Ito rule for the sec-
ond argument, or we can use the Ito rule for both arguments.

FIG. 1. Delay Fokker-Planck equations represent one of the fouWe will show below that these two options are also present

corners of a theory of stochastic systems with time delays.

In the present study, we will dwell on the development of

in the delay Fokker-Planck equation corresponding to

Eq. ().
Now let us turn to the extended phase-space approach to

a Fokker-Planck perspective for stochastic systems with timgelay differential equations. There are two closely related
delays. In Sec. I, we will show that the delay FOkkGr-P'&anapproaches_ First, we can define a random path fungi@n

equation derived by Guillouziet al. is consistent with a

of length 7 at every time point by

technique that is nowadays frequently used: the extended

phase-space approagd2,34,51,54,55,68 In Sec. Il A, we
will exploit the Fokker-Planck approach to derive the first-
order statisticgi.e., the stationary probability densitjefor

nonlinear stochastic systems with time delays. The focus will
be on systems with feedback loops that only weakly affect .\ (eobtain the initial functioneg(—2) = X(-
the system dynamics. Such systems have previously been 0

analyzed by means of master equatip4®,69,70. Examples
will be given in Sec. Il B. In Sec. Il C, we will use the
Fokker-Planck approach to study the second-order statisti
of stochastic systems with time delays. In this context, w
will briefly elucidate how to derive analytically autocorrela-
tion functions for systems described by Edj) and how to
estimate the functionk and g involved in Eq.(1) on the
basis of experimental observations.

Il. DELAY FOKKER-PLANCK EQUATIONS
AND EXTENDED PHASE-SPACE APPROACH

We consider a random variabit) e () that is defined by
Eqg. (1) for t>0 and subjected to particular boundary condi-
tions (e.g., natural, periodic, or mixed boundary conditions
For t e [-7,0], we assume thaX(t) is given by the initial
function g X(=2)=¢y(-2) with ze[0,7]. In order to inter-
pret the multiplicative noise term in E@l), we first write
Eqg. (1) in the form of

t

X(t) = X(t) + f _h(X(9),X(s— 7))ds

t

t
+ f L 9(X(9), X(s = )dW), 2

t
where W(t) denotes a Wiener proce§gl]. Next, we note
that expressions Iikd:*xn(s)dW(s) with n=1,2,... can be
interpreted according to the Stratonovich or Ito calc(ii.

C
€

o2 =X(t-2) 3

for ze [0, 7] [68]. In particular, we have
@0)=X(1), @(7)=X(t-1), 4)
z) with z

[0,7]. If we regard the random path functigp(z) as a
function of the arguments and z, then it is defined on an
eSxtended domain of definition given @ ,») X [0,7]. That
iS, the stochastic process under consideration is embedded in
a two-dimensional space. Second, a random path function
¢ (2) can be defined at discrete time poirtis=n7 by
cptn(z):X(t) with t=z+nr, ze[0,7], n=0,1,2... .That is,
we haveqotn(z):X(z+ n7) [32,34,51. Here the stochastic pro-
cess is studied on the domain of definitidex [0, 7], where
Z={0,1,2,..}. In what follows, we will use the random
path functiong,(z).

First, we assume that a particular random patfX@j is
given on an interva]t” - 7,t"] and denote this path by:(2).
Next we consider time points that fall in the subsequent
interval [t",t"+7]. In this case, the time-delayed state vari-
able X(t—7) can be expressed by meansgf(z) like

X(t=1=¢(n)=gp(r-t+t), (5)

see Fig. 2.
ConsequentlyX(t—7) can be eliminated in Eq2), which
leads to the stochastic integral equation

t t
X(1) = X(t) + f h(X(9),9ds+ f _T(X(s),9dWMs) (6)
t

t

that involves the time-dependent coefficieTltBnd@ defined
by

h(x,8) = h(x, ¢ (7- s+1)), (7)
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T(x,9) =g(x, @r(r—s+1")). (8) @s at timet’ in the statex’,_ a_nd gvo_lves during the_time
interval [t—7,t] such that it is distributed at time like
The stochastic integral equati¢f) describes a Markov dif- p(x t), then P(x,t+At) is given by P(x,t+At)=(1
fusion process with probability densif(x,t)=(5(x—X(t))) +At|:)P(x t)+O(At?) again
and transition probab_ility_densit}?(x,t|x’,t’) provided thqt Multipl),/ing Eq. (12 With P(X.t—7)=(8(x.— X(t- 7))
the random patkp:(t) is given. Consequently, the evolution and integrating the result with res;)eq we obt?ain the evo-
equations ofP(x,t|¢r) andP(x,t|X' ,t'; ¢¢) are defined by | . equation

9 “
EP(X.HQD{) = L(X! VX!QD'[*)P(X!H()D’[*)v (9) ﬁp(x,t) = f dX I:(X V X )P(X t.X t_ 7_) (15)
ot 0 T 1 Y Xa AT 1B Ay ’

d L ~ Vo which can alternatively be expressed as
—POG i) = L6 Voo )POGIX ) (10 yhe e

9 N

with D =FX VPP (16)

. 91~ v. & | 1P for

LOGVgre) == — 1 OO + 29060 = | + 2= 3G°(x.0), ) ) o
(12) F(x,Vy,P) = JQ d&{— a—x{h(x,xT) + Eg(x,xf)#

where »=0 holds for the Ito case and=1 for the 5

Stratonovich case. From Eq9), (8), and(11), we read off + }izgz(x,xf)}p(xﬂt_ Ax,1). (17)

thatL depends only oy (7—t+t")=X(t— 7). The reason for 29X

this is that the stochastic feedback systéimdepends only  Wwe will refer to Egs.(15) and (16) as delay Fokker-Planck

on one particular previous time poiti=t—7. Consequently, equations. They have first been derived by Guillowtial.

for all pathsey that involve the same state variablét—7),  [59] using Ito’s stochastic equation and can also be derived
the probability densitiesP(x,t|¢¢) and P(x,t|x’,t"; ¢p) using a stepwise representation of stochastic processes with
evolve in the same way at tinteIn other words, the evolu- time delays[62]. Multiplying Eq. (13) with P(x,,t—7)

tion of the probability densities at timedepends only on =(§(x.—X(t-7))) and integrating the result with respect to
X(t=17). Therefore, Eqs(9)—-(11) become X,, we get the evolution equation

J _r 9 ~
EP(x,t|x7,tT) =L(X, VX)) P(Xtx,,t = 7), (12) E|D(x,t|x’,t’) :f dx,L(x,V,,X,) X P(x,t;x,t— 7x’,t").
Q

t=t-7
(18

Multiplying Eq. (18) with P(x',t")=(8(x’ = X(t"))), it follows
that the joint probability density evolves like

= ﬂ(x,Vx,xT)P(x,t|x’,t’ X,t=17)

t=t-7

1%
EP(x,t|x’,t’ Xnt,)

(13
. d ~
with aP(x,t;x’,t’) = | dx.L(x,V,,x,)P(X,t;x,t—7;x",t').

Q
A d Ag(X, X,
L(X VyX,) =— ﬁ—x{h(x,xf) + gg(X.xr)% (19

1 P This relation has been previously derived[8%] using the
+ E—ZQZ(X,XT)_ (14) stepwise representation of stochastic processes with time de-
X

lays mentioned earlier. In the following sections, we will use

Note thaffas indicated on the left-hand sides of Ed®) and  the delay Fokker-Planck equatiéns) for P(x,t) in order to
(13)] the partial derivatives with respect tact only on the determine the first-order statistics )é(t?. Likewise, we will
very first time arguments and do not act on the time variabléise the delay Fokker-Planck equatiofis) and (19) for
involved in the constraint. Let us emphasize the meaning oP(X,t|x’,t") andP(x,t;x’,t") for the purpose of data analy-
Egs. (12 and (13). Equation (12) describes howP(x,t) sis and in order to determine the second-order statistics of
changes at timé provided that the system is at tinhe 7 in X(1).
the statex,. Accordingly, if we are dealing with a system that

is at timet—7 in the statex, and evolves during the time
interval [t—7,t] such that it is distributed at time like

P(x,t), then for a small time stept the distributionP(x,t 1. Perturbation theory for stationary probability densities

+At) is simply given by P(x,t+At)=(1+AtL)P(x,t) In what follows, we assume that the time-delayed feed-
+O(At?). Likewise, from Eq.(13) it follows that if we have  back of a system interacts only weakly with the system dy-
a system at hand which is at tinbe 7 in the statex,, which ~ namics such that the drift forde of the system can be de-

A. First-order statistics and perturbation theory
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composed intd(x,x.) =h©@(x)+h®(x,x,), whereh® can be  thoughy does not account for all second-order contributions.
regarded as a small perturbation. That is, we deal with perTherefore, the expressioR©(x,t)+e(x,t)+x(x,t) is only
turbation theory and assume that the orders of magnitude amrrect up to first-order terms, which is the reason why in Eq.
h@s0(0) andhP = O(1). For the sake of convenience, we (23) further terms ofO(2) occur on the right-hand side. We
put g(x,x,) =g@(x) < O(0) (for a more general case, see Ap- consider now the evolution of the probability density

pendix A). Then, Eq.(1) becomes

%X(t) =hO(X(1)) + hP(X(1),X(t - 7)) + X)L (V).

(20)

Let us decompose the operaforike F=F©+F® with

ﬁ<0>:-&ix[h<°><x) g0 9 ()] L7 14OF,

(21)

5 9
FO=—— | dxh® %) P(x,t = 7ix,t)
XJ o

(22

such thatF©@o«0O(0) and FY«QO(1). Furthermore,P(x,t)
and P(x,t|x’,t") may be decomposed like

P(x,1) = PO(x,1) + e(x,t) + x(x,0) + 0(2),

P (x,r)

(23

P(xtx',t') = PO X' ,t') + e(x X, 1) + O(2). (24)

Here, the orders of magnitude aRe®(x,t),PO(x,t|x’,t")
«0(0), and e(x,t), e(x,t|x’,t")<O(1). The functiony de-
serves special attentiog.is a term of second-ordér.e., we

P®D(x,t), which has been defined in E@3) by PY(x,t)
=PO(x,1)+e(x, 1)+ x(x,t). From Egs.(25), (26), and(29), it
follows that

a ~ ~
EP(J‘)(X,t) — [F(O) + F(l,O)] P(l)(X,t) (29

with

. J
FLO = — —f dxhP(x,x)PO(x, t - 7x,t)  (30)
XJa

and P(x,t)=PW(x,t)+0O(2). This evolution equation can be
solved in the stationary case. In the stationary case,
PO(x,t|x’,t") given by Eq.(27) corresponds to the transi-
tion probability density of a stationary Markov diffusion pro-
cesses, which implies th&©(x,t|x’,t') depends only on
[t—t’| [73]. In particular, we find the relationship

POt = x,t) = PO(x,,t + 7Ax,t), (31)

which should be regarded as one of the key ingredients of
our perturbation theoretical approach to stochastic systems
with time delays. From Eq$29) and(31), it follows that the
stationary solutiorPg(x) is given by

0=[FO+FL9PD(x) (32)

have y«O(2)] but it does not contain all possible second- with

order terms. The explicit definition ¢f will be given below.
Substituting Eqs(23) and (24) into Eq. (16) and collecting
all terms of zeroth and first order gives us

%P(O)(X,t) =FOPO(x 1), (25)
ie(x t) = |A:(O)E(X t) _ i f dX,,h(l)(X X )P(O)(X t
a ! x| Jo 1Ry -
- T|X,t)P(O)(X,t)] . (26)

Furthermore, it is clear that the unperturbed transition prob-

ability density is defined by

9 R
EP(O)(x,t|x’,t’) =FOPO(x t|x’,t"). (27)

In addition, we require thay satisfies the evolution equation

dxhP(x,x,) PO(x,,t - 7ix,t)

J ~ J
—x(x,) =FOx(x,t) - —
mx( ) X(X,1) ),

X[e(x,t) + x(x,0)]. (28

- d
FAO=— —~ L dxhP(x,x)PO(x,t+ 7ix,t) (33

and Pst(x):Pg)(x)+O(2). Introducing the stationary prob-
ability currentJ=const and the delay-induced drift given by

hx) = [ dxh®(x,x,)PO(x,t+ 7x,1), (34)
0
Eq. (32) can equivalently be expressed as
J= [h<°>(x)+gg<°>(x 9o )+h(1)(x) P (%)
1d
~ 5 97 PPI0. (35)

From this relation, the stationary probability denslﬂg)(x)

of the stochastic process defined by EB0) can conve-
niently be determined using the techniques developed for
univariate ordinary Fokker-Planck equatids8,71]. In clos-

ing these considerations, we would like to note that (8§)

can be generalized to stochastic systems with noise ampli-
tudes that depend on time-delayed state variables—as shown

From Eqg.(28) we see thaly is a term of second-order, al- in Appendix A.
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2. Moments and variance independent ofr, the stationary probability densm}’ D(x)

Recall thatP(S?(x) is the first-order approximation of the becomes independent afin the limit 7— c°.
stationary probability densityP(x): Ps(X)= P<1>(x)+0(2)
Therefore, all moment$Xn>g) computed fromP (x) are
first-order approximations of the momen&"), of P.(X). Finally, let us consider stochastic systems with time-

Let 02" denote the first-order approximation of the variancedelayed feedback for which=0 holds in the stationary case

o2 of P.(x). Then, Y may be computed frorrrrZ(l (e.g., systems subjected to natural boundary conditions

_?txg>(1)_ <X)(°)<X>(l) Altsézrnatwely we may use Then, from Eq.(37) it follows that the stationary solution

st st ' ’ P(S?(x) is given by
oV =AY - [P (36)

Both expressions dn‘fer from?Z, only by terms of second and P (x) = m
higher order.a?=02"+0(2).

4. Vanishing probability current

3. Limiting casesr—0 and 7— o . hO)+ go( X) +h®(x")
For 7— 0, Eq.(35) reduces to xXexp| 2| dx )
T g.(39 [g(O (X )]2
3= WO + 20000 8 4 o | @3
whereZ is a normalization constant. In particular, if EQ0)
- }i[g“’)(x)]zp(s})(x). (37) involves only additive noise, that is, if we have

This equation defines the exact stationary probability density Ex(t) = hO(X(1)) + hOX(1), X(t - D) + VQI' (1), (44)
of the stochastic process given by EBO) for 7=0. That is, dt
we do not obtain a first-order approximation of the problem
without delay but we recover the exact solution,

I|m PH(x) = Pg(X). (38) %()__ { 2[v<o>(x)+§‘/<1>(x)]} 45

Q
The reason for this is that far=0, Eqgs.(25), (26), and(28)
read that involves the potentialsv®(x)=-*dx'h@(x") and

VO (x) - *dx'hM(x’) and the normalization constat.

then we get the Boltzmann distribution

(9 ~
EP(O)(X"[) =FOpO(x 1), (39)
B. Examples

1. Natural boundary conditions: Perturbed Ornstein-Uhlenbeck

Jd ~ Jd
il (] -~ h® (0)
P e(x,t) = FWYe(x,t) axh (X, x)PP(x,1), (40) processes

An important class of systems can be described by delay
differential equations of the formXt)/dt=-aX(t) +h(X(t
—7)) with a>0 [47]. Let us assume thdi) X is defined on
(41) the real line(i.e., we haveQ)=R), (ii) the impact of the
feedback loop given by is weak by comparison with the
If we add this equation up, we see tHR{(x,t)=P?(x,t) Jinear force -aX, and(iii) in addition to -aX andh, there is
+e(x,t)+x(x,1) satisfies exactly the Fokker-Planck equationan additive fluctuating force. Then, we are dealing with a
of the nondelayed problem. It is also clear that if we neglecperturbed Ornstein-Uhlenbeck process defined by
the functiony, then Eqs(39) and(40) do not add up to the
Fokker-Planck equation of the nondelayed problem. There-
fore, the functiony(x,t) plays a crucial role here.
Let us now assume that for the unperturbed system, a
stationary squuonP exists. Then forr—o we have The unperturbed  transition probability  density
PO(x,,t+7]x,1) =P (x) Consequently, in this limiting P©(x,t|x’,t") corresponds to the transition probability den-
case the delay- mduced drif84) reads sity of an Ornstein-Uhlenbeck process with damping con-
stanta and reads

1 [X x'e —a(t-t )]2
PO, t|x/,t') = —exp| -
and the stationary probability densﬁ?}g)(x) can be obtained 2mK(t-t) 2K(t-t)

from Egs.(35) and(42). Since the noise-induced dri#2) is (47)

O%)((x,t) =FOy(x,t) - %(h@(x,x)[e(x,t) + x(x,b)].

dgtx(t) = —aX(t) + hO(X(t - 7)) + QI (v). (46)

h(x) = J dx,h®(x,x,) P(x,) (42)
Q
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with K(t—-t")=Q[2a] {1-exd-2a(t-t)}] [58,71. Conse-
quently, the delay-induced drit84) reads

h® (x)—\/2 K( fdxfhl)(x )exp{

[x, - xe?7?
2K(7)
(48)

and the corresponding potential is given by

PHYSICAL REVIEW E 71, 031106(2005

\7(1)()() ==/ 277-}]('(7-) fx dx/f dXTh(l)(X )
QO

2K(7)
Since we have)l=R and natural boundary conditions hold,
in the stationary case we hawk=0, and Eq.(44) with

(49)

1
PY(x) = = exp| -
(x) Z7 €Xp

and moments are given by

(XM = i,f dxxX" exp| -
Z'Jq

2. Comparison with exact results: Linear stochastic delay
differential equation

hO(x)=—ax and h®(x,x,)=h(x,) applies. Therefore,
P(s?(x) is found as
|
X _ y/aar2
2[5”(2/2‘[277*((7)]_1’2[ dx’f dXTh(l)(xT)exp{——[XT xe ] }
Q 2K(7)
(50)
Q
x _yamar2
22 - [2mK(7)] 2 f dx f deh(l)(xT)exp{ M}
Q 2K (7) -

Q

P<1()—\/a+bem p{ a+bear)x}. (56)

Let us illustrate the perturbation theoretical approach for a

system for which an exact analytical solution exists. To this
end, we consider the linear model

dEtX(t) =-aX(t) -bX(t-7) + \J'al“(t) (52

with Xe Q=R and a>b>0.
probability density is given by

[ 1 X2
P.(x) = ?O'Et ex;{— ?‘ét}

In this case, the stationary

(53
with
_Q(1+ bo™ Sinl’(wr))
04 2 ( a+bcosiwr) (54

with w=+a’-b? [63,65. For b<a, perturbation theory ap-
plies. In this case, we have®(x)=—ax and h®W(x,x )=
-bx, and Eq.(48) gives us the delay-induced drift

h® = - pxear, (55)
The potentials satisfV(©@(x) +V(x)=[a+bea7|x2/2 and
from Eq. (50) we obtain

We see that forr— 0, we obtain the exact stationary solution
of the nondelayed problerfef. Sec. 11 A 3. Let us demon-
strate that forr>0, Eq. (56) corresponds to the first-order
approximation of the exact stationary soluti(@8) by com-
paring the moments of the Gaussian distributi¢d3) and
(56). Smce(X}St—(X)(l> 0 holds, we need to consider only
the variances. The varlancé(l) X2 computed withP'?

is given by

(1) — L 57
st 2(a+be?)’ (57
Expanding this expression with respecthtgields
be—af
o2V=—= ( >+Ob2. 58
= on a (b%) (58

Likewise, expanding the varian€®4) with respect td leads
to

-ar

Q b
gt 2a<1_

That is, the variances of both distributions differ only by

terms of second and higher order. Since for Gaussian distri-
butions with vanishing mean all higher even moments can be
expressed in terms of powers of variances, we conclude that

) +0(b?). (59)
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all higher even moments of Eq&3) and(56) are equivalent 0.05
up to termsO(2), which implies that the distributiort56) Viot | 0.04
indeed describes a first-order approximation of the exact
Gaussian solutioi53). F0.03
0.02
3. Shifts of fixed points: tanh model 0
In life sciences, sigmoidal conversion functions with satu- 0 ‘
ration domains are often modeled by means of tanh and 060X T 0010'2 04«
arctan functions. Therefore, we consider next a stochastic o
system subjected to a time-delayed feedback loop that in- -—0.02
volves such a sigmoidal conversion function. More explic- _ ~
itly, we study the stochastic process defined by FIG. 3. Total potentiaV/(x)=V(@(x) + VD(x) of the tanh model

(61) computed from Eq(64) for =0, 7=2, andr= (from bottom
to top). Other parameters a®=0.5, b=-0.1,¢c=2.0, ¥=1.0, and

Q=1.0.
d
ol

(60) hP(x) = -bn/ if dx, tanHb(x, - 0)]exp{—
mQJq
(62

with X e Q=R anda,c, >0 andb<0 (for similar models,
see[19,22,25,7). 5
In what follows, we will briefly show that the feedback Note thath!” does not depend an Using some geometrical

mechanism fol®+# 0 can result in a shift of the fixed point of considerations, we see that fé= 0 we havm(l) 0, whereas

the unperturbed system. In this context, it is important to ~(1) )
realize that fora>0 andb<0, the model describes the in- f~orl 0=0 wg have hi;”<<0. The potentialsV®(x) and
terplay of two contradictory forces: an attractive forcax- V(X are given by

and a repulsive force btanH-). Let us consider now the

caseQ=0. Let X denote the stationary solution f@=0. 2 1
For >0, the tanh function is shifted to the right and a V(O)(x)+v(1)(x)=a—+bw [ =
27K

%xa) = —aX(t) - btanHc(X(t - 1) — 6)]+ VQI'(¢)

system that is located close to the origin is driven to negative 2

state values. Therefore, the fixed pokXy is shifted away X

from zero to negative valueX;<0. Letu(t) denote a small X f dx'f dx, tanHb(x, - 6)]
deviation from the fixed pointu(t) =X(t) - Xs. Then, we ob- 0 Q

tain du/dt=-au(t)-b’u(t—7) and one can show that for [x,- X &2

Iblc<a and arbitrary#>0, we havelb’|<a. This implies s e (63)

that the fixed poiniX, is stable[1,68,79. That is, the deter-
ministic system is monostable. In what follows, we require
that the inequalitylbjc<a holds. The casébjc>a will be ~ where we have chosen the lower boundary of integration
considered in Sec. Il B 4 below. such thatv¥(0)=0. For 7=0, the potentials read

We assume now thaf| is small such that the time-
delayed feedback yields only a perturbation of the overall
dynamics. FoiQ>0, we can apply the perturbation theoret-

~ X b b
0 D)= XD _o-2
ical approach developed in Sec. Il A. We hav®(x)=-ax VP00 + Vg (0 > e In costic(x-0)] c In cosfice],

and hW(x,x,)=-btanHc(x,— 6)]. From Eq.(48), it follows (64)
that
whereas in the limit-— oo the potentials are given by
hY(x) = -b+/ f dx, tanHc(x. - 6)]
27K ~ ax ~
() VO(x) + VB (x) = — - hx. (65)
ex — X xe€ T 61) ’
2K (7) ~
Examples fov©@(x)+V(x) are depicted in Fig. 3. We see
_ ) that for 7>0, the system is driven to the left-hand side just
with K(r)=Q[2a]™'[1-exf-2a(n)}]. In particular, forr=0  as in the case of=0.
we haveh; ((x)=-btanfc(x—6)], whereas forr— o from The stationary solution:‘(s? can be computed from Eq.
Eq. (42) it follows that (50) and reads
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|blc>a, the stationary point is unstable. In fact, fbfc>a

the deterministic model describes a bistable system with two
stable stationary points &€;# 0. In order to focus on the
essentials of a bistable stochastic system with time delay, we
consider a special case of the tanh model: the limiting case
c—oe. In this case, the tanh function becomes the sgn func-
tion. That is, we have ligy.., tanHcz =sgr(z) with sgn(z)

=1 for z>0, sgriz)=0 for z=0, and sgfg)=-1 for z<O0.

The corresponding deterministic model readx(teVdt=

‘ —aX(t)—bsgrX(t)] and exhibits an unstable fixed point at
-06 -04 02 0 02 04 X4=0 and two stable fixed points Xt,=+|b|/a. Forc— ,

the stochastic tanh model with time delay given by E&{)
FIG. 4. Solid lines represent stationary probability densitieshecomes
1

P(St)(x) of the tanh mode(61) computed from Eq(67) for 7=0, 7

=2, andr=~ (from bottom to top. Other parameters as in Fig. 3. d =

Diamonds represent exact stationary distributiBgéx) of Eq. (61) d_tx(t) =-aX(t) -bsgriX(t-7)]+VQI'(t) (69
obtained by solving Eq(61) numerically using an Euler forward

schemd58] in combination with a Box-Muller algorithm for=0,  wijth X(t) e Q=R anda>0, b<0. In what follows, we will
7=2, and7=20 (single time stepAt=0.01, number of realizations analyze this equation for small parametﬁﬂssuch that the
N=10°). perturbation theoretical approach of Sec. Il A can be applied.
Accordingly, we have h@(x)=-ax and h®(x,x,)=

N * - Eq.(4
PR(x) = 1 expy - 2| ax +Db 1 dx’ b sgrix,] and Eq.(48) reads
7 Q| 2 27K J :
O = — b/ f
(x)=-b 27K, dx. sgr(x,)

xf dx. tanjc(x, - 6)]
Q

xexp{ [XT_Xe_aT]Z} (70)
X_— x'@ar2 T o
xXex —%)]} (66) 2K(7)
g with K(T):Q[Za]‘l[l—exi—Za(r)}]. Using the error func-
In the limiting cases— 0 and r— «, we have tion defined by exi)=[\27]"Y* exp{-z°/2}dz, the noise-
induced drift(70) can be written as
@ 1 2|ax b
Peeo(X) = —— exp) — =| —— + — In coshc(x - )] a
h“Y(x)==b|1-2erl - . (71
b 2K (7)
- —IncosHhch) | r, (67)
¢ From Eq.(69), it is clear that forr=0 we havehf)l)(x):
1 o[ a —-b sgnx). From Eq.(42), it follows that for 7— we have
PO, = - eXp{—5[7—h1,xx]}, 68)  h(x)=0. Note that these two limiting cases can also be
* deduced from Eq(71) if we take into account that
where Z, and Z, are normalization constants. Note that
Pé}?ﬁo is the exact stationary solution of the nondelayed e _ 2a (72)
problem (cf. Sec. Il A3. Examples forP{_;, PY, and 2K(n) N Qlexp{zar} - 1]
Pg')ﬁm are given in Fig. 4. Solving the tanh model numeri- ) ) o
cally, we see that for the selected parameters the probabiligjolds and if we consider—0 with lim,_.[1-2 er{-A2)]
densitiesP'Y(x) describe the system quiet well. =sgnz) instead of7=0 on the one hand, and—c with

erf(0)=1/2 on the other hand. The potentiald/©(x)

v i
4. A bistable stochastic system with time delay +VIP(x) satisfy

Bistable stochastic systems involving time-delayed feed- - ax? X rgmar
back loops that interact weakly with the system dynamics V%) +V®(x) = 7+b X=2 f eff(‘ 2K )dX' :
have previously been studied in terms of master equations 0 (7
that describe transitions between the two available stable (73
stateg48,69,7Q. In contrast to these studies, we will apply
the Fokker-Planck approach. To this end, we consider agaili the limiting casesr— 0 andr— <, we have
the tanh model(61). For =0, =0, and Q=0, the tanh 2
model has a stationary point ¥{;=0 and the linearization at (0) T — X
this point yields di(t)/dt=(|blc—a)u(t). We see that for VI + Ve = 2 +blx, (74
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0.04
Viot

0.03 1

0.02

FIG. 5. Total potentiaV,,(x)=V©(x)+V(x) of the double-

well potential model(69) computed from Eq.73) for =0, 7 FIG. 6. Solid lines represent stationary probability densities

=0.003,7=0.1, andr=< (from bottom to top. Other parameters P(Sf)(x) of the bistable mode(69) computed from Eq(78) for 7

area=2.0,b=-0.2, andQ=1.0. Critical delay:r" ~0.006[see Eq. =0, 7=0.003,7=0.1, andr=c (from bottom to top. Other param-

(77)]. For 7<7" we are dealing with bistable potentidlsee, e.g., eters as in Fig. 4. Diamonds represent exact stationary distributions

7=0.003, whereas forr> 7" we are dealing with monostable po- P.(x) of Eq. (69) obtained by solving Eq:69) numerically using an

tentials(see, e.g.7=0.1). Euler forward schemgb8] in combination with a Box-Muller algo-
rithm for 7=0, 7=0.003, 7=0.1, and7=5 (At=0.001 for 7=0, 7

g axl =0.003;At=0.01 for 7=0.1, 7=5; N=10).
VO(x) + VB (x) = - (75)
1 ax?
- PY_.(X) =— exp{— —} (80)
Some examples of the potentid,(x) =V (x)+VD(x) are ’ VarQ Q

shown in Fig. 5. in the limits 7=0 and7— . Note that Eq(79) is the exact

For 7=0 we have a double-well potential, whereas for . . . -
—o we get a monostable parabolic potential. Let us deter-Statlonary solution of Eq(B9) with 7=0 (cf. Sec. 1A 3.

. . . (1) .
mine the critical valuer™ for which the double-well potential The stationary distributiofP,'(x) for several values of is

vanishes. The double-well potential vanishes if the secongepme_d in Fig. 6. Numerical simulations of the stochastic
derivative ofVO(x)+V()(x) vanishes ak=0. Alternativel elay differential equatio(69) have been carried out as well.
ervative o anishes ak=u. Allernalively, — iqre 6 illustrates that for the selected parameters there is a

we may say that the double-well potential vanishes if the firsiy4 match between the numerical results and the first-order
derivative of the forcén©(x) +h¥'(x) atx=0 vanishes. Using  approximationPM(x) of the stationary distribution of Eq.

Eq. (70), we find that (69).
i[h(o)(x) +T1(1)(X)] A 2b\/ a . 5. Periodic boundary conditionsj: Sine loop Wit.h time .delf':lys
dx %=0 Qmlexp2ar} - 1] Let us turn now to stochastic systems with periodic state

(76) variables that involve time-delayed self-regulating feedback
mechanisms. Prominent examples are laser systems with op-
Then, 7 can be computed by equating the left-hand side tdical feedback described by the lkeda equation and self-

zero. Thus, we get regulated voltage-controlled oscillataisee the Introduction
for references Let Xe Q=[-T/2,T/2] denote a periodic
« —il 1+ 4p? 27 variable with periodT>0. Then, the sine loop with time-
T~ %a n maQ)’ (77) delayed feedbacls4,56 and additive noise is described by
The stationary distributiorﬁ’g)(x) can be obtained from the dﬂx(t) - esin[ m—7TX(t _ T)] + V“GF(I) (81)
potentialsV(?(x) andVY(x) and reads t T
with m=1,2,.... Weconsider the case in whichis small
Wyon_ L 2| ax such that the time-delayed feedback rgsults only in a pertur-
Pat () =27 exp) - ol 2 bation of the diffusion processxddt=+QI'(t) subjected to

periodic boundary conditions. In this case, we find that
X xear| h©O(x)=0 and hW(x,x,)=-esinimax,/T]. Furthermore,
+b<x—2J0 erf{— 2K(T)}dx)]}’ (78) PO(x,t|x',t") is the transition probability density of a
Wiener process defined by

see Eqgs(45) and(50). In particular, we have

d &
—POXtx',t") = Q—ZP(O)(x,t|x’,t’) (82
2| a A 2 X
RS | o
: Z Q| 2 satisfying periodic boundary conditions. We fifiiL]
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C. Second-order statistics, correlation functions,
and data analysis

1. Correlation functions and second-order statistics

Equation(19) can be used to determine correlation func-
tions. To this end, we consider the stationary case in which
the joint probability densityP(x,t;x’,t’) depends only on
the time differencai=t—t’ for an arbitrary reference timt.

If we putt’=0, Eq.(19) becomes

108 04 0 04 08 1 g .
X %Pst(x, u;x’,0)= | dx.L(X,V,,X,)Ps(X,U;X,u—7;x",0).
FIG. 7. Solid lines represent stationary probability densities o

P(S?(x) of the sine loop mode(81) computed from Eq(85) for 7 (87)
=0, 7=0.5, and7=1.0 (from top to bottom. Other parameters are . . .
€=0.1,m=1, T=1, andQ=0.3. Diamonds represent exact station- The evolution qf th_e correlatpn function C(u)
ary distributionsP.(x) of Eq. (81) obtained by solving Eq@1) = (AMX(U))B(X(0)))s involving two functionsA andB can be
numerically using an Euler forward scherf88] in combination ~ determined by multiplying Eq(87) with A(x) and B(x’).
with a Box-Muller algorithm for the respective values (At Integrating with respect te andx’ and using partial integra-

=0.01N=10®). tions, we obtain
- d dA(X(w))
na(t-t' —Cu:<—{th,Xu—
P(O)(X,t|X,,t/):l+E ex _QZ—-I(—Z)} du ( ) dx ( ( ) ( T))
n=1
vdg?(X(u),X(u = 7))
Aol o)
X| co ?x co ?x
d’A(X(u))
fnm \ +< L2 GXW.X(u=7)BX(0) ).
+sin| —x|sin{ —x" | |. (83
T T 89)
Consequently, the delay-induced di(®4) is given by In general, this evolution equation does not provide us with a
closed description foC(u). In special cases, however, the
~ ~ o212 oo T right-hand side of Eq(88) can expressed in terms @f{u)
hD(x) = — eg Q7 72T"] sm( = x). (84 ke [63.,64
Since we are dealing with periodic boundary conditions and iC(u) =f[C(u),C(u-7)]. (89

h®(x,) is a T-periodic function, the stationary probability du

currentJ vanishes in Eq(35) and Eq.(45) can be used in
order to get

o 1 2eTe QM 7 7(2T] mar
Pst (X) = ? exp Q—rrm- CO ?X . (85)

In these cases, the correlation functiofu) can be computed
from Eq.(89) and appropriately defined boundary conditions
for C(0) and dC(0)/du. For details, se§63,64.

2. Data analysis

Using the Fokker-Planck perspective for stochastic sys-
Let us consider the~limits—>0 andr—«. Forr=0from Eq.  tems with time delays, the drift functidm(x,y) and the noise
(81) it follows that h®(x)=—e sin(m#/Tx). For 7— o from amplitudeg(x,y) can be estimated from experimental data.
Eq. (42) it follows that h¥(x)=0. Note that these limiting Although this technique has already been discussed in previ-
cases can also be computed from E&f). Accordingly, for ~ OUs studie$63,76], we would like to dwell on this issue in

=0 we have this section. In particular, we will show how the data-
analysis technique proposed [i63,76 is related to the ex-
1 2T mor tended phase_-space approat_:h leading to the c_JeIay Fokker-
P(s?r:o(x)z_e c s(—x) , (86) Planck equation(18). In addition, we will elucidate the
’ Zy Q T physical meaning of the expressions used in the data-analysis

technique and we will address the implementation of the
which corresponds to the exact stationary solution of Egdata-analysis technique.
(81) with 7=0 (cf. Sec. Il A 3. For 7—=, we obtain the To begin with, let us determine the evolution Ef(t))
uniform distribution P{=1/T. The probability density under the condition thaX(t')=x’ andX(t-7)=x.. Multiply-
Pg)(x) is shown in Fig. 7 for several values of ing Eq.(18) with x and integrating with respect tq we get
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d 1
a(x(t» o X = f N dx{ h(x,x,) A (X(t+ At) = X(0)|xt) e proxraxd Xit—r) e [x,x +ax] = DX, X;)
t")=x" X(t-7)=x_
v P9 >] + Yo x) BXXD)
+ —0(X,X T g(XIXT) ’ (96)
zg( ‘r) X 2 X
X P(X,tX/,t"; X, t = 7) 1
(90) At (DXt + At) = X112 xt) e roxe ] X(1=1) elx,x +Ax] =~ 94X, X,).
(assuming that surface terms arising due to partial integration (97)

vanish. In the Ilimiting case t—t’ for which

As stated in the Introduction, the average corresponds to an
P(x,t|x",t";x,,t=7)=8(x—x") holds, Eq.(90) reduces to

ensemble average involving the realizatiofi@) of the state
variableX(t). Given a data set witN realizations, we finally

d%O((t» X(H=xX(t=1)=x ~hoox) gg(X’XT)M- get an implementation of Eq¢91) and(93) in terms of
| (92) izi iy [X (T AD - X(D)] ~ h(x,x,)
Likewise, multiplying Eq.(18) with x*, one can show that At Eid(xm 1
the relation + '—Z}g(x,xf)%, ©9)
OIEt<x2(t)> . =2X[h(x,x7)+§g(xyxr)%ﬁ;(xr) | |
)=XX(t=)=X, e o7 1 EiE,(XVXT) [X(t+At) = X()]? ) Foxx) o
g(x,x,) (92 2At Eiel(x,xT) 1 >

holds. Combining Eq991) and (92) leads to . . .
wherel(x,x,) is the set of indices that belong to the realiza-

d tions X' satisfying the constraink'(t) e [x,x+Ax],X!(t—7)
d—t[<X2(t)>—<X(t)>2]x(t):x,xu-r):x7=QZ(X,XT), (93)  e[x,,x,+Ax]. If the system is ergodic and stationary, we

may replace the ensemble average by means of a time aver-

see alsd77]. Equations(91) and (93) are open to an inter- age. In this case, we may use a single stationary trajectory

esting interpretation. Accordingly, we see that the first mo-cOMPosed of the data poin¥=X(t;) with ;=iAt+t,. Then,
ment M,(t) is related to the drift functiorh, whereas the &S OPposed to Eqg98) and(99), we obtain an implementa-

varianceo?2(t) is related to the noise amplitude More pre-  tion of Eqs.(91) and(93) in terms of
cisely, the conditional changes of the first momihtt) and
y g Ml iEiQ(X,XT) [Xi+l_xi]

the variances(t) determine drift and diffusion, ~ hixx) + l—}g(x y )r?g(x,xf)
At Ei el(x,x.) 1 2 x
dy = hxx,) + Zg(x,) 22X - (100
dt X(O=XX(t-7)=X_ TTo2TT
94
(84 1 Eiel(x,xT) (X1 = X7 g?(x,X,)
oo = : (109
2At > 1 2
d 2 Pel(xx,)
—o = g7 (XX, (95)
dt | x=xx(t-n=x, wherel(x,x,) is the set of indices that belong to the dXta

satisfying the constraini; e [x,x+AX],X_, € [X,, X, +AX]

where it is understood that first the time derivatives are comand the delay- is given byr=mAt. For examples and further
puted and then the conditional averages are carried out.  details, sed63,76. Note also that the data-analysis method

In order to apply these relations to experimental data an¢agsed on Eqs.(91)—101) generalizes the data-analysis
implement them on a computer, we need to account for thénethod for Markov diffusion processes that was introduced a
properties of experimental data sets. Real time series are rgrile ago[78,79 and since then seems to attract more and
corded with a sampling frequendy Therefore, we express more researchersee, e.g.[80-85 and references thergin
the differential quotient d/d as dA\(t)/dt=[A(t+At) In closing these considerations, let us dwell on the imple-
—A(1)]/At, where At=1/f should be small. Furthermore, mentation of the data-analysis approach. First, above we
since experimental data sets contain only a finite number dfiave written conditional averages in terms of averages for
data, we can determine the drift function and noise amplitudeandom variables that fall into particular small intervéds
only with a finite resolutiorAx. As a result, Eqs(91) and  boxes. Basically, this means that we have expressed prob-
(93) become ability densities in terms of box estimatofsr, mathemati-
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cally speaking, in terms of indicator functionsuch that a [l B 1) and the Wiener processee Sec. Il B5 However,
probability density P(x) is written like P(x) for small time differences, transition probability densities of
=~ Zixi(X, %, AX)pi(x, AX), wherep; is the probability to find Markov diffusion processes can be written in terms of path
a random variable in the intervik;,x,+Ax] andy; equals 1  integral solutiong58,87], which implies that for small time
for xe [x,x+Ax] and is zero otherwise. It is clear that this delays the required transition probability densities are avail-
is only one possible choice of an estimator function. Oneable. In general, one may evaluate the eigenfunction expan-
may use different estimators depending on the obsewed sion of transition probablllty densities of Markov diffusion
expected statistics of the system under consideration. SecProcessefs8,71] [for an example, see E(B3)]. In doing so,
ond, one should realize that the number of available datanalytical expressions for stationary distributions that in-
points determines the accuracy of the result obtained by th\éD'VE infinite series of functions can be obtained. Second, the
data analysis method because in order to determine the driperturbation theoretical approach yields correct results when
function and noise amplitude at a particular state with coorthe time-delayed feedback results in the perturbation of a
dinates(x,y), only data points close to this point can be reference state given by a stationary Markov diffusion pro-
evaluatede.g., see the box-estimator techniguEherefore, ~ CESS. As we have |IIustre}ted explicitly in the example section
if there are only few data points available, we may confine(Sec. Il B), this assumption holds for various systems. This
ourselves to determine only expansion coefficients of drif@ssumption, however, usually fails when we consider sys-
functionsh and noise amplitudeg. Accordingly, one may t€ms with time delay; beyo_nd their bifurcation threshold
expand h and g into a set of functions¢(x,y) with  (€.9., beyond a Hopf bifurcation threshpld
Ja2¢i(X,y) ¢ H(x,y)dxdy = 6. The expansion coefficients of

the functions¢; can then be determined by multiplying the APPENDIX A: PERTURBATION THEORETICAL
conditional averages occurring in the data analysis technigue APPROACH TO SYSTEMS WITH TIME-DELAYED
(see Sec. Il CRby ¢;* and integrating the results with re- MULTIPLICATIVE NOISE

spect tox andy. In doing so, all available data points are
evaluated, not only those close to a particular statg). For
further details and examples, S&38)].

Let us generalize some of the results obtained in Sec.
Il A. To this end, we introduce the diffusion coefficiebt
=g?/2. Then, Eq(1) reads

lIl. CONCLUSIONS dEtX(t) = h(X(t), X(t = 7)) + 2D,(X(t), X(t = T)T'(1).

We have shown that delay Fokker-Planck equations pro-
posed by Guillouzicet al. can be derived by means of a
method that is frequently used in the theory of delay differ- . N -
ential equations: the extended phase-space approach. N-rg)g\?vt?etzggnﬂ term occurring in the operatbsee Eq(14)]
only do these delay Fokker-Planck equations describe the
evolution of transient probability densitid¥x,t), but they v
also describe the evolution of transition and joint probability D1(x,X,) =h(x,x,) + ——Dy(X,X,). (A2)
densities P(x,t|x’,t") and P(x,t;x’,t’). Although delay 20x
Fokker-Planck equations are not closed and consequentNext’ we decomposk and D, like
cannot be solved by integration, they are very helpful tools
for the analysis of stochastic systems with time delays. For h(x,x,) = h@(x) + hV(x,x.), (A3)
example, as shown in Sec. Il A, from the evolution equation
for P(x,t) we have derived the stationary distributions of © @
stochastic systems that are perturbed by the impacts of time- Da(x,x;) = D37 (X) + D37(X,X), (A4)
delayed feedback loops. This result is of particular impor- . . .
tance because in this case we can treat analytically syster?%h'Ch implies that Eq(A1) becomes
that involve nonlinear drift force. Furthermore, as shown in

(A1)

Sec. Il C, from the evolution equation f&¥(x,t;x’,t’) cor- EX(t) =hOX(t)) + hD(X(t),X(t - 7))

relation functions can be derived, whereas the evolution

equation forP(x,t|x’,t’) can be exploited in order to esti- +V2[DP(X(t)) + DIX(), X(t - DT ().
mate drift functions and noise amplitudes from experimental

data. (A5)

Let us b_riefly_address some _benefits and Iimitat_ions of th(?n line with the assumption that time-delayed feedback only
results derived in this study. First, the determination of sta- erturbs the system dynamics, we f® D(O)OCO(O) and

tionary distributions of weakly perturbed stochastic system D o . . D) (1)
with time delays involves the transition probability densities (O)’Dz *O(1). '2) this case, we find>;=D;"+D;" with
of the unperturbedi.e., nondelayedsystems. Closed ana- P; *0O(0) andD; " O(1) and

lytical expressions of such transition probability densities of

Markov diffusion processes can only be found in some spe- D(1°)(x) = hO(x) + EiD(ZO)(X), (A6)
cial cases, such as the Ornstein-Uhlenbeck pro@ess Sec. 29x
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J
DY (x,x,) = hP(x,x,) + ga—XD(zl)(X,XT)- (A7)

Just as in Sec. Il A, we write the operatfér[see Eq.(17)]
like F=F@+F®, Then Eqgs(21) and(22) are generalized to

. 5
FO=-—DP(x) +

x (A8)

%D(z‘”(xx

~ J
Fl=-— f dX.DE (XX P, t = 7fx,1)
XJ o

(92
+ % dx,DP(x,x)P(x,t = 7x,t).  (A9)
Q

It is clear that Eqs(25)—(29) now hold when we replace Eq.
(30) by

FLO = _ 9

dx,DP(x,x,)PO(x,t = 7]x,1)

Fa
+ —ZJ dx, DY (x,%,) PO(x,,t = 7]x,1).
),

(A10)

Accordingly, the stationary distributioﬁg)(x) is defined by

PHYSICAL REVIEW E 71, 031106(2005

0:[IA:(°)+IA:(S%’O)]P$>(X) [see Eq(32)] with F© defined by Eq.
(A8) and

. p
Fa¥=-— f @D )P (ot + 1)

(92
ta f dx DS (x,x)PL(x, .t + 7ix,t) (A11)
Q

instead of Eq(33). Accordingly, Eq.(35) can be generalized
and reads

3=[D (0 + B (TP - £ D00 + B 0TPH (0
(A12)
with

DP() = | dxDP(xx)PL(x,t+7x.b),
Q

(A13)

DPx) = | dx,DP(x,x)PQ(x, t+7xt). (Ald)
QO

As pointed out in Sec. Il A, Eq(A12) can be solved with
respect toP(S?(x) using standard techniques available for
conventional univariate Fokker-Planck equati¢8,71].
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